
Robotics and Autonomous Systems 87 (2017) 162–176

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Episodic non-Markov localization
Joydeep Biswas *,1, Manuela M. Veloso
Computer Science Department, Carnegie Mellon University, PA, USA

h i g h l i g h t s

• Reasoning about observations arising from permanent, temporary, or moving objects for mobile robot localization in changing environments.
• A new graphical representation that augments the Markov localization DBN to represent the presence of, and correlations between observations of

unmapped objects.
• Derivation of the belief for Episodic non-Markov Localization (EnML).
• Analysis of its computational complexity.
• Experimental results showing the benefits of EnML.

a r t i c l e i n f o

Article history:
Received 20 November 2015
Accepted 2 September 2016
Available online 29 September 2016

Keywords:
Localization
Long-term autonomy
Mapping

a b s t r a c t

Markov localization and its variants are widely used for mobile robot localization. Thesemethods assume
Markov independence of observations, implying that the observations can be entirely explained by
a map. However, in real human environments, robots frequently make unexpected observations due
to unmapped static objects like chairs and tables, and dynamic objects like humans. We therefore
introduce Episodic non-Markov Localization (EnML), which reasons about theworld as consisting of three
classes of objects: long-term features corresponding to permanent mapped objects, short-term features
corresponding to unmapped static objects, and dynamic features corresponding to unmapped moving
objects. Long-term features are represented by a static map, while short-term features are detected and
tracked in real-time. To reason about unexpected observations and their correlations across poses, we
augment the Dynamic Bayesian Network for Markov localization to include varying edges and nodes,
resulting in a novel Varying Graphical Network representation. The maximum likelihood estimate of the
belief is incrementally computed by non-linear functional optimization. By detecting timesteps along
the robot’s trajectory where unmapped observations prior to such time steps are unrelated to those
afterwards, EnML limits the history of observations and pose estimates to ‘‘episodes’’ over which the
belief is computed. We demonstrate EnML using different types of sensors including laser rangefinders
and depth cameras, and over multiple datasets, comparing it with alternative approaches. We further
include results of a team of indoor autonomous service mobile robots traversing hundreds of kilometers
using EnML.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Human environments have elements that remain unchanged
over time, for example, the architectural features of buildings.
However, such environments also include many movable objects
like tables and chairs, and moving objects like humans. Robots
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deployed in human environments therefore often encounter ob-
servations of movable andmoving objects at locations that change
over time. Markov localization and its many variants, widely used
for mobile robot localization, are thus ill-suited for robots de-
ployed over extended periods of time, since they assume that
all observations of a robot can be explained by a static map. In
recognition of the limitations of Markov Localization with a static
map in changing human environments, two categories of alternate
solutions have been proposed: (1) to re-map the environment
when changes are detected, or (2) tomodel and learn the dynamics
of the changes in the environment. Environments that change
infrequently, and remain static between such reconfigurations, are
suited to the approach of re-mapping. In environments where the
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changes occur continually, and where robots may be deployed
frequently to every location, it may also be possible to learn the
dynamics of the changes in the environment.

However, in areas that are too large to observe repeatedly and
frequently, or where there is no discernible pattern to the changes,
it may be infeasible or intractable to either build updated maps, or
to model the changes in the environment. We therefore propose a
novel localization algorithm for a third alternative,where the robot
reasons about the nature of its observations: whether they corre-
spond to permanent objects which we term ‘‘Long-Term Features’’
(LTFs), movable objects termed ‘‘Short-Term Features’’ (STFs), or
moving objects, termed ‘‘Dynamic Features’’ (DFs). We call this
‘‘Episodic Non-Markov Localization’’ (EnML) because it relaxes the
central assumption of Markov localization that observations are
independent given themap, and because it reasons about episodes
of observations that relate the corresponding robot poses. EnML
reasons about non-mapped objects in real time, at the time of de-
ployments, without relying on up-to-date static maps, or dynamic
maps.

We introduce a new graphical model, the Varying Graphical
Network, to keep track of correlations between observations aris-
ing from observations of unmapped objects while simultaneously
tracking correlations to a permanentmap. EnMLmaintains a belief
of the history of pose estimates of the robot over ‘‘episodes’’ of
observations of unmapped objects. For every time-step, it classifies
observations into LTFs, STFs, or DFs. Observations made from LTFs
are matched to a permanent map, while correlations between
observations from STFs at different time steps are computed. The
belief is framed in terms of a cost function over odometry obser-
vations, observations of LTFs related to the static map, and cor-
relations between observations of STFs from different time steps.
The maximum likelihood estimate of the belief is incrementally
computed over successive steps by functional non-linear least-
squares optimization over the cost function. The cost function
representation of the belief is distinct from other belief represen-
tations such as Particle Filters [1], Extended Kalman Filters (EKFs)
and Unscented Kalman Filters (UKFs) [2], and Partially Observable
Markov Decision Processes (POMDPs) [3]. As we shall show, the
cost function representation allows EnML to tractably compute
the maximum likelihood estimate of the belief even over long
episodes,whichwould not have been possible using particle filters,
EKFs, UKFs, or POMDPs.

We present experimental results using multiple datasets to
quantitatively compare the accuracy of EnML to alternative ap-
proaches. EnML is agnostic to the specific type of sensor used —
we present results over datasets using long-range and short-range
laser rangefinders, as well as inexpensive depth cameras like the
Microsoft Kinect sensor. Furthermore, we present results from ex-
tensive deployments of a set of autonomous service mobile robots,
the CoBots [4], comparing the robustness of EnML to Corrective
Gradient Refinement [5], a variant of Markov Localization.

2. Background and related work

Suppose a robot makes observations S = {s1, . . . , sn} of the
environment, and accumulates robot odometry U = {u1, . . . , un}

over n time-steps t1 . . . tn. At each time-step ti, observation si is
made, and odometry ui is recorded, corresponding to the relative
motion of the robot from timestep ti−1 to ti. Given a prior map
of the environment M , the problem of mobile robot localization
is then stated as estimating the probability distribution over the
robot pose at the latest time step xn, or the ‘‘belief’’ Bel,

Bel(xn) = P(xn|s1, . . . , sn, u1, . . . , un, x0, . . . , xn−1,M). (1)

This equation is general to all localization algorithms, assuming
only that there exists a prior map of the environmentM .

Fig. 1. Dynamic Bayesian network for Markov localization.

Markov Localization [6] makes two independence assumptions
in order to simplify the computation of the belief:

1. Markov independence of odometry: Given the estimate of
the robot pose xn−1 and the latest odometry un, the estimate
of xn is independent of past pose estimates x0, . . . , xn−2 and
odometry u1, . . . , un−1, so that

P(xn|s1, . . . , sn−1, u1, . . . , un, x0, . . . , xn−1,M)
= P(xn|xn−1, un). (2)

2. Markov independence of observations: Given the estimate
of robot pose xn, observation sn is independent of past pose
estimates x0, . . . , xn−1, observations s1, . . . , sn−1 and odom-
etry u1, . . . , un, so that

P(sn|s1, . . . , sn−1, u1, . . . , un, x0, . . . , xn,M)
= P(sn|xn,M). (3)

Using the Markov assumptions and applying Bayes rule, the
recursive update of the belief simplifies to (see [7] for a complete
derivation),

Bel(xn) ∝ P(sn|xn,M)
∫

P(xn|xn−1, un)Bel(xn−1)dxn−1. (4)

Fig. 1 shows the dynamic Bayesian network (DBN) for Markov
localization. Based on this DBN, for the ‘‘prediction’’ step before
sn becomes available, the Markov blanket [8] of xn consists of
un, which is observed, and xn−1, which is estimated by the belief
Bel(xn−1). For the ‘‘update’’ step, the Markov blanket of sn consists
of xn, which is estimated by the predict step, un, which is observed,
xn−1, which is estimated by the belief Bel(xn−1)), and the map M ,
which is known. Thus the belief update for Bel(xn) does not require
storing the history of observations and states prior to tn−1.

2.1. Markov localization and variants

By varying the belief representation, the map representation,
how the update steps are computed, and what sensors are used,
numerous variants ofMarkov localization have been proposed. The
belief could be represented by Position Probability Grids [6], Par-
tially ObservableMarkovDecision Processes (POMDPs) [3], Normal
distributions [9], or discrete samples called ‘‘particles’’ in Monte
Carlo Localization [1].

Monte Carlo Localization (MCL) [1] approximates the belief
distribution as a set of discrete samples, and has been shown to
be effective at localizing a robot in a number of environments with
few or no changes over time. However, in varying environments,
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there are often observations that do notmatch the staticmap. Such
observations are ignoredbyMCL, thus increasing theuncertainty of
the belief. Several extensions toMCL have therefore been proposed
to model the uncertainty of the belief by varying the distribution,
and number of samples.

KLD-Sampling [10] adapts the number of samples based on the
Kullback–Leibler Distance between the belief and the posterior,
thus reducing the computational requirements when the belief
accurately models the posterior, and increasing the number of
particles when the posterior distribution is likely to spread out.
Sensor Resetting Localization (SRL) [11] takes into account mis-
match between observations and the belief by drawing samples
directly from the observation model to incorporate into the belief.
Corrective Gradient Refinement (CGR) [5] uses the analytically
computed state space derivatives of location samples to refine the
proposal distribution, thus reducing the number of required parti-
cles by samplingmore densely along directions of highuncertainty.

Extensions to Markov Localization such as KLD-Sampling, SRL,
and CGR allow a robot to model the large uncertainties in local-
ization arising from observations that do not match the map in
environments with frequent changes. However, their localization
accuracy is still poor, due to insufficient corrections from the obser-
vation model resulting from the mismatch between observations
and the map.

2.2. Simultaneous localization and mapping

So farwe have assumed that amapM of the environment exists,
and is used for robot localization. This map could be built by col-
lecting sensory data and batch processing it offline, or (as is more
common in recent work) online on the robot while simultaneously
tracking the location of the robot on the map. ‘‘Simultaneous Lo-
calization And Mapping’’ (SLAM) is the problem of building a map
M while concurrently maintaining a belief of the robot’s trajectory
x0, . . . , xn.

The DBN for SLAM with a static map is similar in structure
to that of Markov localization. The difference is that in Markov
localization, themapM is known and only the latest pose estimate
xn is updated at every step, but in SLAM the map M is unknown
a priori, and is updated at every step, along with the full history
of pose estimates x0, . . . , xn. Despite the updates to the history of
pose estimates, the model is still Markovian: it is assumed that
were xn−1 and un accurately known, xn would be independent of
all other prior states and observations, and that were xn andM ac-
curately known, observation sn would be independent of all other
prior states and observations. Bailey and Durant [12,13] review
some of the popular approaches to SLAM. Pose graph SLAM [14]
frames the SLAM problem as a graph optimization problem where
robot poses are represented as nodes on a graph, and edges joining
the nodes indicate relations between them based on odometry or
observation matching. ‘‘Factor Graphs’’ [15] offer an alternative
representation of the correlations between the pose history and
themap in SLAM, replacingmeasurements by ‘‘factor nodes’’. Some
approaches split up the SLAMproblem into algorithms for building
a pose graph (e.g., by scan matching [16,17]) and algorithms for
efficiently updating and optimizing the pose graph by iterative
non-linear optimization [18].

2.3. Varying environments

In reality, neither the odometry nor the observations of a robot
deployed in a real environment are truly Markovian. In a human
environment, as shown in Fig. 2, observations made by the robot
include parts that do indeed correspond to the map, but also in-
clude moving objects (e.g., humans and other robots) andmovable
objects (e.g., tables, chairs, recycling bins) that change locations on

Fig. 2. Non-Markov nature of robot observations, shown by plotting laser
rangefinder observations over multiple time steps, and registered by Episodic non-
Markov localization to a static map (blue lines). The observations include obser-
vations that can be explained by the map (orange points), observations that can
be explained by movable, but currently static objects like a potted plant and doors
(purple points), andmoving objects like humans (green points). The robot trajectory
is plotted in gray. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

a daily basis. Since Markov localization assumes that observations
correspond only to features from a static map, unexpected obser-
vations of static objects will cause two potential problems:

1. If there are no locations on the map that match the observa-
tions, the localization algorithm will be unable to track the
location of the robot.

2. If the observations of movable objects coincidentally match
a feature on the map (e.g., if the robot matches an observed
plant pot to a pillar on the map), then the localization al-
gorithm will estimate the pose of the robot incorrectly and
with overconfidence.

If unexpected observations are explicitly removed from the
computation of the belief by filtering the observations [6], then the
incorrect and overconfident estimation of pose will be less likely,
but the uncertainty of the robot’s location will still grow.

Existing approaches to mobile robot localization in varying
environments may be classified into three broad categories: Map-
Update approaches, Local Static Map approaches, and Dynamic
Map approaches.

Map-Update approaches.
Map-Update approaches model the environment as a static

map, but update the static map when new observations conflict
with the last map estimate. Dynamic Pose Graph SLAM (DPG-
SLAM) [19] augments pose graph SLAM with indicators for every
node to indicate parts of the observations from that node as being
‘‘static’’, ‘‘added’’, or ‘‘removed’’. The indicators for every node are
updated after every pass of the robot through the environment,
and the latest estimate of the map is recovered from the static and
added observations from every pose node.

Local static map approaches.
Local Static Map approaches model changes to the environ-

ment by constructing local sub-maps that represent the observed
change. The Patch Maps approach [20] maintains multiple sub-
maps called ‘‘Patch Maps’’ of the different possible states of mov-
able objects in the environment, like the different observed angles
of a door. The resulting set of local maps represents observed
configurations of the environment. For localization, the algorithm
selects that local PatchMap that best represents the state of the en-
vironment at that moment. Temporary Maps [21] model the effect



J. Biswas, M.M. Veloso / Robotics and Autonomous Systems 87 (2017) 162–176 165

of temporary objects by performing local SLAM, using the latest
global map estimate as an initial estimate for the local map. Using
these locally static maps, they perform localization with a particle
filter. The Multiple Map Hypotheses approach [22] estimates the
current state of the environment from a composite of prior maps,
called the Long Term Memory (LTM), and the Short Term Memory
(STM). Unexpected observations are initially added to the STM, and
if they are seen persistently, later added to the LTM.

Dynamic map approaches.
Dynamic Map approaches attempt to capture the dynamics of

the changes in the environment by incorporating them into the
map. DynamicMaps [23] extends SLAMandmaintains estimates of
themap over several timescales. In order to accommodate changes
on the order of different timescales, the approach of Dynamic
Maps maintains recency weighted samples of the map at several
timescales simultaneously. The state of the environment is saved
as multiple local maps at all predefined timescales. During deploy-
ments, the robot picks the local map for its current location from
that timescale that bestmatches its present observations. Indepen-
dent Markov ChainMaps [24] model a dynamic environment as an
occupancy gridwith associated independentMarkov chains (iMac)
with every cell on the grid. Each independentMarkovChainmodels
the transition probabilities of the associated cell for transitioning
from unoccupied to occupied, and vice-versa. The iMac occupancy
grid thus models the environment by learning the probabilities of
each cell remaining occupied vs. unoccupied. Rao-Blackwellized
Particle Filters with Dynamic Occupancy Grids (RBPF-D) [25] si-
multaneously estimate the robot’s pose in a varying environment,
as well as the dynamics of the environment. The representation of
the environment in RBPF-D is similar to iMac, where the dynamics
of each cell in the occupancy grid map is modeled using a hidden
Markov model.

2.4. Our approach

In contrast to the previous work, we introduce Episodic non-
Markov Localization, which explicitly reasons about each obser-
vation as arising from three distinct classes (Section 3). The three
classes correspond to permanent objects, termed Long-Term Fea-
tures, or movable but temporarily static objects, termed Short-
Term Features, or moving objects, termed Dynamic Features. The
classifications of the observations into Long-Term, Short-Term, and
Dynamic features are performed independently for each obser-
vation, and for each time step. Dynamic Features are not used
for the computation of localization, but are reasoned about as
being distinct from Long-Term or Short-Term Features, and are
otherwise used for obstacle avoidance. We derive the expression
for the localization belief for Episodic non-Markov Localization
including the long-term features as well as the short-term features
concurrently with the odometry (Section 4). To keep track of the
correlations between the observations across different time steps,
we introduce the Varying Graphical Network (Section 4.1), which
extends the Dynamic Belief Network for Markov Localization to
include correlations across timesteps due to observations of un-
mapped objects. The resulting localization belief is solved for the
Maximum Likelihood Estimate by non-linear functional optimiza-
tion of a cost function representation of the belief (Section 5). Thus,
Episodic non-Markov Localization assumes neither that the world
is static, nor that static objects will continue to remain static. The
Long-Term Features are matched to a persistent map to provide
global pose corrections,while Short-TermFeaturesmatched across
time steps to provide relative pose corrections.

Map Update approaches attempt to estimate the latest state
of all STFs and LTFs in the environment. Such approaches may
be applicable for environments that change occasionally, so that

updating the map might provide predictions of future observa-
tions. However, if the locations of movable objects in an area
change between successive times that the robot visits that area,
maintaining updated maps is of little use, since such maps would
still not match future observations of the robot. A robot may be
tasked to periodically re-visit all areas tomitigate such a limitation,
but such a solution would require the robots to either periodically
sacrifice task execution time in favor of mapping, or require sepa-
rate specialized mapping robots.

Local Static Map approaches attempt to map the states of STFs
and LTFs in small regions whenever changes are observed. Such
approaches are effective when there is a finite set of observable
configurations of movable objects. If, however, the set of configu-
rations were intractably large or infinite (as is the case for objects
like chairs in open spaces), it would be infeasible to maintain local
static maps for every such possible configuration. Furthermore,
local static maps assume that movable objects are static for the
duration over which the local map is constructed, and thus do
not address cases where static objects like chairs are moved while
being observed.

Dynamic Map approaches attempt to model the dynamics of
the STFs and DFs in the environment by augmenting the map
representation to track the likelihood of STFs appearing or dis-
appearing. Such approaches are effective when a robot is able to
visit an environment often enough to capture the dynamics of the
movable objects, and if there is a consistent trend to the dynam-
ics. However, in large areas of deployments, it is infeasible for a
robot to periodically visit all locations to build accurate dynamic
maps. Furthermore, not all changes can be accurately modeled by
their frequency, or transition probabilities: many changes in the
environment are singular and unique, such as the occurrence of a
crane in an atrium to repair a skylight.

Episodic non-Markov Localization does not rely on any map of
the movable objects, and reasons about the Short-Term Features
at runtime and on demand. It is thus still applicable in scenarios
where the environment changes between successive deployments
of the robot, or where the movable objects cannot be represented
by locally static maps, or if the robot cannot observe andmodel the
dynamics of the environment. It reasons about the unexpected ob-
servations being static or dynamic individually at every timestep,
and is thus capable of handling cases where unmapped static
objects start moving, or vice-versa.

3. Classification of observations

At each time step, Episodic non-Markov Localization classifies
the observations from all poses as arising from Long-Term Features
(LTFs), Short-Term Features (STFs), or Dynamic Features (DFs). Let
xi denote the pose of the robot, and si denote the observation, at
time step ti. Each observation si is a set of ni 2D points si = {pji}j=1:ni
observed by the robot. The points pji may be acquired from a 2D
laser rangefinder, or fromanobstacle scan fromadepth image [26].
The points pji are in the robot’s reference frame, and need to be
transformed to the global reference frame to compare them with
the map and other observation points from different timesteps. To
aid with this transformation from the robot’s reference frame to
the global reference frame, we represent the pose xi of the robot
on the map at time-step i as an affine transform Ti that consists of
the 2D rotation corresponding to the robot’s angle at xi, followed
by a 2D translation corresponding to the robot’s coordinates at
xi. Thus, for every 2D point pji in the robot’s reference frame, the
corresponding location of the point in the global reference frame is
given by Tip

j
i. Each point pji has to be classified as an LTF, STF, or DF.

Fig. 3 demonstrates the steps in the classification of observations
in an example with two poses.
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3.1. Classification of long-term features

We use a vector map [5] representation M = {li}1=1:s for the
permanentmap, consisting of a set of s line segments li. To evaluate
which of the observed points pik are LTFs, an analytic ray cast [27] is
performed from the latest estimate of xi. The result of the analytic
ray cast is a mapping from pji → lj, lj ∈ M , indicating that the
observed point pji is most likely to correspond to an observation of
the line segment lj. Let dist(p, l) denote the perpendicular distance
of point p from the line segment l where both p and l are in the
reference frame of the map. The observation likelihood P(pji|xi,M)
of the point pji is then given by

P(pji|xi,M) = exp

(
−

dist(Tip
j
i, lj)

2

Σs

)
, (5)

where Σs is the scalar variance of observations, which depends on
the accuracy of the sensor used. Thus, given the location of the
observed points in the reference frame of the map, observations
are classified as LTFs if the observation likelihood of the point given
the map is greater than a threshold, P(pji|xi,M) > ϵLTF. Observed
points pji that satisfy this condition are classified as LTFs, and those
that do not are classified as non-LTFs. The set LTFi ⊆ si denotes the
set of points in si that have been classified as LTFs, and LTFi the set
of points that have been classified as non-LTFs. The sets LTFi and
LTFi are thus given by

LTFi =

{
pji ∈ si|P(p

j
i|xi,M) > ϵLTF

}
, (6)

LTFi = si \ LTFi. (7)

3.2. Classification of short-term features

Observedpoints that are classified as non-LTFs could potentially
be STFs. To check if an observed point pji ∈ LTFi is an STF, it is
compared to all non-LTF points observed prior to time-step i to
check if they correspond to observations of the same point. Given a
point pji ∈ LTFi observed at time-step i and another point plk ∈ LTFk
observed at a previous time-step k, the probability that both the
observations correspond to the same point is given by the STF
observation likelihood function,

P(pji, p
l
k|xi, xk) = exp

(
−

∥Tip
j
i − Tkplk∥

2

Σs

)
, (8)

whereΣs is the scalar variance of observations. Let plk be the closest
neighboring point to pji from the non-LTFs of other timesteps,
defined as

plk = argmin
plk∈LTFl∀l̸=i

∥Tip
j
i − Tlplk∥. (9)

Therefore, a non-LTF point pji ∈ LTFi is classified as an STF if the
closest neighboring point plk ∈ LTFl from a time-step l, l < i such
that P(pji, p

l
k|xi, xl) > ϵSTF:

STFi =

{
pji ∈ LTFi|∃plk ∈ LTFl : P(pji, p

l
k|xi, xl) > ϵSTF

}
. (10)

To speed up the correspondence check, points pji ∈ si fromevery
observation si are stored in KD-trees [28]. The STF observation
likelihood function for a pair of matching STF observations pji and
plk introduces a correlation between observations si and sl since
pji ∈ si and plk ∈ sl. Note that at the first timestep that an STF is
encountered, since it does not match any observations from other
timesteps, it will be classified as a DF (as discussed in the next

Fig. 3. An example of classification of observations by EnML from two poses. The
robot poses are shown as blue triangles, and the observations are shown as dots.
Observations from two poses (a) are first independently compared to the vector
map (shown in blue) to find LTF observations. The remaining non-LTF observations
(b) are aligned (c) with the last pose prior, and (d) matching observations are
classified as STFs. The remaining observations are classified as DFs.

section). However, it will be classified as an STF from the next
timestep on, as the robotmakes additional observations thatmatch
the STF.

3.3. Classification of dynamic features

Observations that are classified as neither LTFs nor STFs corre-
spond to objects that were observed at one particular location for
only one particular time-step, and were not observed at any other
time-step at the same location. This implies that these objects
are not static, and hence their observations are classified as DFs,
DFi = si \ LTFi \ STFi. In this work, we do not actively track DFs or
use them for localization, so the correlations between observations
due to DFs are not used to further refine the belief. However, points
that are classified as DFs in one pose, at one iteration of the EnML
update may subsequently be matched with points observed at
future poses, at which time they will become STFs.

3.4. Discussion

The classification of observations, as introduced, allows
Episodic non-Markov Localization to treat observations differently
based on the nature of the objects being observed. Such an ap-
proach is in contrast to that of SLAM, where all observations are
treated equally, irrespective of whether they are of permanent
objects like the walls, or whether they are of movable objects like
tables, which are likely to move from their perceived locations.
Furthermore, by keeping track of the observations over time, and
reasoning about which spaces have been seen as being open in the
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past, it would be possible to update the permanent map to include
LTFs that have consistently been observed as STFs at the same loca-
tion, and which the robot has never been able to see through. The
observation classification thresholds ϵLTF and ϵSTF are related to the
sensor noise represented by the variance of the observations Σs,
and the confidence interval of classifications. Tighter confidence
bounds on ϵLTF and ϵSTF result in fewer mis-classification of obser-
vations, but also results in more DF classifications due to sensor
noise and pose uncertainties. For the deployments of the CoBots
(Section 7.3), the laser rangefinder sensor had an experimentally
calculated variance of Σs = 0.0025 m2, and the classification
thresholds were set to the 99.7% acceptance confidence interval,
corresponding to ϵLTF = ϵSTF = 0.09.

4. Episodic non-Markov localization

We first derive the expression for the localization belief in
Episodic non-Markov Localization, and introduce the non-Markov
terms in the belief. Next, in Section 4.1 we introduce the Vary-
ing Graphical Network, a novel graphical representation to track
the correlations between observations from different time-steps
arising from the non-Markov terms in the belief. In Section 4.2
we introduce the concept of episodes to limit the history of poses,
odometry and observations that must be tracked to maintain the
belief in Episodic non-Markov Localization.

Given the initial pose of the robot x0, observations s1:n, odom-
etry u1:n, and a static map M , the belief over the robot’s trajectory
x1:n is given by

Bel(x1:n) = P(x1:n|s1:n, x0, u1:n,M). (11)

Applying Bayes’ rule and separating out the terms involving sens-
ing and odometry, we get

Bel(x1:n) = P(x1:n|s1:n, x0, u1:n,M)

=
P(x1:n, s1:n|x0, u1:n,M)

P(s1:n|x0, u1:n,M)
∝ P(s1:n|x1:n,M)P(x1:n|x0, u1:n). (12)

Note that the odometry observations are independent at each step,
so the pose update terms are independent of each other, resulting
in

Bel(x1:n) ∝ P(s1:n|x1:n,M)
i=n∏
i=1

P(xi|xi−1, ui). (13)

Each observation si is a set of multiple points arising from a
sensor like a laser range-finder or a depth sensor. As introduced in
Section 3, each of these points are from either Long-Term Features
(LTFs), or Short-Term Features (STFs), or Dynamic Features (DFs),
so the observation si can be expressed as a union of the observa-
tions of these three types of features:

si = sLTFi ∪ sSTFi ∪ sDFi . (14)

Exploiting the fact that different classes of observations (LTFs,
STFs and DFs) are independent of each other, the belief for Episodic
non-Markov Localization thus becomes

Bel(x1:n)

∝ P(sLTF1:n |x1:n,M)P(sSTF1:n |x1:n)P(s
DF
1:n|x1:n)

i=n∏
i=1

P(xi|xi−1, ui). (15)

We do not track DFs for localization (but use them for obstacle
avoidance), so the terms involving DFs are ignored and assumed
to be taken on a constant value. The observations of LTFs at each
timestep, given the pose estimate of the same timestep and the

map, are independent of observations from other timesteps. Fur-
thermore, the observations of different STFs are independent of
each other as well, resulting in,

Bel(x1:n) ∝

i=n∏
i=1

[
P(sLTFi |xi,M)

]
P(sSTF1:n |x1:n)

i=n∏
i=1

P(xi|xi−1, ui) (16)

∝ P(sSTF1:n |x1:n)
i=n∏
i=1

[
P(sLTFi |xi,M)P(xi|xi−1, ui)

]
. (17)

Let the number of sets of STFs observed be m. Each set of STFs
corresponds to observations of the same unmapped object, as seen
from different poses. Each set of STFs introduces correlations be-
tween the poses from which that unmapped object was observed.
The terms corresponding to the observations of sets of STFs can
thus be further decoupled, since each set of STFs, corresponding to
a different unmapped object, is independent of all the other sets
of STFs. Note however, that observations in the same set of STFs
are not independent, as they belong to the same object, and could
potentially be related to each other, as determined by the nearest-
neighbor search for classifying STFs (Section 3.2). The belief thus
factorizes as,

Bel(x1:n) ∝

i=m∏
j=1

[
P(s

STFj
1:n |x1:n)

] i=n∏
i=1

[
P(sLTFi |xi,M)P(xi|xi−1, ui)

]
. (18)

This expression is the foundation for episodic non-Markov lo-
calization. There are two parts to this expression: the first part
consists of a product of m terms P(s

STFj
1:n |x1:n) corresponding to the

observation of m STFs, and the second part consists of a product
of n LTF observation likelihood terms P(sLTFi |xi,M) and n odometry
terms P(xi|xi−1, ui). The LTF observation likelihood terms and the
odometry terms in Episodic non-Markov Localization are identical
to the observation likelihood and odometry terms, respectively, in
Markov Localization. If the robot does not observe any unmapped
observations (m = 0), the only terms remaining will be the n
independent terms corresponding to the observations of LTFs, and
odometry. Thus, in the special case where there are no unexpected
observations, Episodic non-Markov Localization reduces to Markov
Localization. The computation of the observation likelihoods for the
STFs (P(s

STFj
1:n |x1:n)) and the LTFs (P(sLTFi |xi,M)), and the odometry

likelihoods (P(xi|xi−1, ui)) is explained in detail in Section 5.
The STFs introduce correlations between multiple poses. The

exact set of such correlations are not known a-priori since they
depend on the exact configurations of unmapped objects in the
environment, and hence must be estimated at run time. To repre-
sent the varying nature of localization in the presence of unmapped
observations, we introduce a new graphical model, the Varying
Graphical Network.

4.1. The varying graphical network representation

As in the Dynamic Bayesian Network (Section 2) for Markov
Localization, a Varying Graphical Network (VGN) includes certain
periodically repeating nodes and edges that do not change with
the belief. We term these the non-varying nodes and edges. A VGN
includes two additional structural elements: varying nodes and
varying edges. The presence and structure of the varying nodes and
varying edges are not known a-priori, and are estimated jointly
with the belief. Since the estimates of the structure may change
with the belief, the structure is likely to change as new observa-
tions become available.

VGNs provide an accurate representation for non-Markov lo-
calization. The presence of LTFs and their relations to the map,
and the correlations between successive poses of the robot due to
odometry observations are encoded by the non-varying edges and
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Fig. 4. An example instance of a Varying Graphical Network (VGN) for non-Markov
localization. The non-varying nodes and edges are denoted with solid lines, and
the varying nodes and edges with dashed lines. Due to the presence of short term
features (STFs) and dynamic features (DFs), the structure is no longer periodic in
nature, and unknown a priori.

nodes. The presence of STFs and DFs is encoded by the presence of
associated varying nodes. STFs are represented as varying nodes,
where the varying node for each STF is connected by multiple
varying edges to the observations from those time-steps that the
STF is observed. DFs are represented as varying nodes, where the
varying node for each DF is connected by a single varying edge
to the observation from that time-step that the DF is observed.
Since EnML does not track the DFs, the correlations of observations
of DFs across timesteps, and hence varying edges that connect
varying nodes for DFs to observations of different timesteps, are
not evaluated. Fig. 4 shows an example instance of a VGN for non-
Markov localization.

Looking back at Eq. (18), the first part consists of the STF terms
P(s

STFj
1:n |x1:n) that arise from the varying nodes and varying edges of

the Varying Graphical Network, while the second part consists of
the LTF terms P(sLTFi |xi,M) and odometry terms P(xi|xi−1, ui) that
arise from the repeating nodes and repeating edges of the Varying
Graphical Network. For every pair of matching STF observations
as introduced in Section 3.2, the VGN of non-Markov localization
includes a varying node representing the unmapped static object,
and a pair of varying edges joining the varying node and each of
the observations from the different timesteps.

The varying structure of the VGN, including the varying nodes
consisting of the STFs and DFs and the varying edges indicating
correlations between STFs and observations, is not enumerable a
priori since there is no way of predicting beforehand the state
of the unmapped static and dynamic objects in an environment.
The structure of the VGN is dependent on the exact locations of
the STFs, the trajectories of the DFs, and from which poses of the
robot’s trajectory the STFs and DFs are visible. The STFs and DFs
cannot, in general, be added to the map since for any pose in the
world, the robot will encounter different STFs and DFs at different
times.

Since the VGN for non-Markov localization has no predefined
structure, it might seem that computation of the belief would
require storing the complete history of all states and observations
since the robot was turned on. However, in practice this is not
necessary, as we shall now show.

4.2. Episodes in non-Markov localization

Suppose there exists a time step ti such that all observations and
state estimates made after ti, given xi, are independent of all prior
observations and state estimates:

P(x1:n|x0, s1:n, u1:n,M)
= P(x1:i|x0, s1:i, u1:i,M)×P(xi+1:n|xi, si+1:n, ui+1:n,M). (19)

This conditional independence implies that there are no STF
observations after ti that correspond to STF observations before
ti. In such a case, the history of states and observations prior to
ti, called the ‘‘episode’’ t0:i−1, can be discarded when estimating
Bel(xi:n) over the episode ti:n. We thus define an episode tj:k to
be a consecutive sequence of time-steps from tj to tk such that
the observations made between tj and tk are independent of all
observations made before tj, given the pose xj, and the permanent
map M . We assume such episode-boundary time-steps tj exist,
allowing real-time non-Markov localization with limited compu-
tational resources. Episode-boundary time-steps frequently occur
in practice when a robot either does not observe any STFs for one
or more time-steps, or if all the STFs prior to the episode-boundary
are unrelated to the STFs after, for example when a robot leaves
one room and enters another through a doorway. Fig. 5 shows an
example VGN near an episode boundary, highlighting the absence
of any varying edges crossing the episode boundary.

A special case of such a transition is when the robot does not
encounter any STFs or DFs for a sequence of time steps from ti to tj,
so that

P(x1:n|x0, s1:n, u1:n,M) = P(x1:i|x0, s1:i, u1:i,M)

×

k=j∏
k=i+1

P(xk|xk−1, uk, sk,M)P(xj+1:n|xj, sj+1:n, uj+1:n,M). (20)

In this case, from ti to tj, the Markov assumptions hold.
Thus, the history of observations and state estimates of the

robot can be divided into episodes such that only observations and
state estimates of the latest episode need be considered to estimate
the latest robot pose xn.

5. Representation of the belief

The dimension of the state space of the belief for EnML Bel(x1:n)
over the complete history of robot poses x1:n is dn, where d is the
dimension of the state space of each pose xi. For ground robots,
d = 3, corresponding to the Cartesian coordinates of the robot
location, and the robot angle. Due to the prohibitively large state
space, we concentrate on evaluating the belief in the neighborhood
of its maximum likelihood estimate (MLE). The MLE of the belief is
given by x∗

1:n such that

x∗

1:n = argmax
x1:n

(Bel(x1:n)). (21)

There are two challenges to maintaining the belief as thus
described:

1. The dimensionality of the state space is considerably larger
than for other localization algorithms. For example, for a
ground robot, while the state space of other localization
algorithms is 3 dimensional (x, y, rotation), for an episode
length of 10 poses EnML has a state space of 30 dimensions.

2. The dimensionality of the state space is variable for EnML.
The dimensions of the state space of EnML increases as new
poses are added to the latest episode, and decreases when a
new episode boundary is discovered, resulting in the latest
episode being shortened.

Due to these challenges, commonly used belief representations
such as Particle Filters, EKFs, UKFs, and POMDPs are ill-suited to
being used for EnML. Particle filters and POMDPs are particularly
poor choices for the belief representation of EnML since the num-
ber of particles required by particle filters, and the size of the
POMDP, both scale exponentially with the dimensions of the state
space. To tractably estimate the MLE of the belief in EnML, we
therefore introduce a cost function representation of the belief. The
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Fig. 5. An example VGN demonstrating the presence of an episode in non-Markov localization. Note the absence of any varying edges that cross the red line indicating the
episode boundary. Hence the pose xi is an episode boundary, where all previous poses up to xi−1 are in the previous episode, and poses xi and later are in the latest episode.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

components of cost function representation, as we shall present,
relate directly to the different terms in the expression of the belief,
and the MLE can be tractably estimated by functional non-linear
least-squares (NLLS) optimization of the cost function.

5.1. Belief as a cost function

Recall from Eq. (21) that we wish to compute the Maximum
Likelihood Estimate (MLE) x∗

1:n such that

x∗

1:n = argmax
x1:n

(Bel(x1:n)) (22)

= argmax
x1:n

⎛⎝i=m∏
j=1

[
P(s

STFj
1:n |x1:n)

]

×

i=n∏
i=1

[
P(sLTFi |xi,M)P(xi|xi−1, ui)

]⎞⎠ . (23)

To estimate the MLE of the belief, we first convert the belief
from a probability distribution representation to a cost function
representation C such that

Bel(x1:n) = P(x1:n|x0, s1:n, u1:n,M)
∝ exp(−C(x1:n|x0, s1:n, u1:n,M)). (24)

The cost function C consists of a sum of m sub-cost functions cSTFj

corresponding to the STF terms P(s
STFj
1:n |x1:n), n sub-cost functions

cLTFi corresponding to the LTF terms P(sLTFi |xi,M), and n sub-cost
functions codomi corresponding to the odometry terms P(xi|xi−1, ui).
The complete expression for C is thus given by

C(x1:n|x0, s1:n, u1:n,M) =

j=m∑
j=1

(
cSTFj (s1:n|xi:n)

)
+

i=n∑
i=1

(
cLTFi (si|xi,M) + codomi (xi|xi−1, ui)

)
. (25)

The MLE is therefore computed by minimizing the cost function
as

x∗

1:n = argmin
x1:n

(C(x1:n|x0, s1:n, u1:n,M)) . (26)

There are two important properties of the cost-function rep-
resentation of the belief that make it a better representation for

computing the MLE rather than the probability distribution repre-
sentation.

1. Quadratic Form: An important property of the sub-cost
functions that we exploit is that they are all purely quadratic
in form. The quadratic forms of the sub-cost functions are in-
troduced in the next section. Since all the sub-cost functions
are purely quadratic, Eq. (26) can be solved by functional
non-linear least-squares (NLLS) optimization.

2. Numerical Stability: The sub-cost functions scale as the
log of the probability values of the corresponding terms in
the belief, and are thus less affected by numerical precision
errors. Furthermore, the sub-cost values are added instead of
multiplied, as in the case of probability values, thus further
avoiding numerical precision errors.

Before we proceed to present the forms of the sub-cost func-
tions, we first summarize here the steps we took in deriving a cost-
function form of the belief.

1. The belief is first factored into the odometry and sensing
terms (Eq. (12)).

2. The sensing terms are further factorized into terms corre-
sponding to the STFs and LTFs (Eq. (15)).

3. The LTF and odometry terms are decomposed into indepen-
dent terms for each pose (Eq. (18)).

4. The belief is then represented in terms of a cost function,
with each independent term in the belief corresponding to
a sub-cost function (Eq. (25)).

5. The MLE is then computed by functional NLLS optimization
of the cost function (Eq. (26)).

The computation of each individual sub-cost function is the
subject of the next section.

5.2. Computation of sub-cost functions

The sub-cost functions are computed and stored as function
objects [29], not as function values, thus allowing the argmin over
C to be computed in real time by non-linear optimization of cost
functions expressed as function objects [30]. Since the optimizer
performs algorithmic differentiation [31] of the function objects, it
provides the same accuracy as symbolic optimization, with much
lower computational requirements.
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The odometry sub-cost function codomi relating poses xi and xi−1
with observed odometry ui is given by

codomi = (xi ⊖ (xi−1 ⊕ ui))TΣ−1
o (xi ⊖ (xi−1 ⊕ ui)) (27)

where Σo is the covariance on odometry based on the motion
model of the robot, and ⊕, ⊖ denote the pose composition and
decomposition operators for robot poses and odometry in the SE(2)
group [32]. Pose composition x = xi ⊕ xj is equivalent to the
multiplication of the corresponding affine transforms, T = TjTi,
and pose decomposition x = xi ⊖ xj is equivalent to the inverse-
multiplication of the corresponding affine transforms, T = T−1

j Ti.
The sub-cost function cLTFi for LTFs for pose i depends on the

observations of LTFs sLTFi ∈ si made at time-step ti. Let there be m
LTF observations in sLTFi , and for each point pji ∈ sLTFi , j ∈ [1,m], let
the corresponding line segment in the vector map Mbe lj ∈ M . Let
dist(p, l) indicate the perpendicular distance of point p from line
segment l. The LTF sub-cost function for pose i is then given by

cLTFi =

j=m∑
j=1

[
dist(Tip

j
i, lj)

2

Σs

]
, (28)

where Ti denotes the affine transform for pose xi as described in
Section 3, and Σs is the variance of the range sensor. Note that the
LTF sub-cost function is derived from the observation likelihood of
LTFs, Eq. (5), introduced in Section 3.1.

Let STF j consist of a pair of points from poses i and k, with point
pi ∈ sSTFi being the point from pose i and point pk ∈ sSTFk from pose
k. The sub-cost function cSTFj is then given by

cSTFj =
∥Tipi − Tkpk∥2

Σs
. (29)

The STF sub-cost function is derived from the pair-wise observa-
tion likelihood of STFs, Eq. (8), introduces in Section 3.2. Note that
all the sub-cost functions (Eqs. (27)–(29)) are purely quadratic in
form, as required for non-linear least-squares optimization.

6. Computational structure of the belief in episodic non-
Markov localization

Thus far we have introduced the EnML algorithm as agnostic
of the algorithm that performs the non-linear functional optimiza-
tion of the cost function C . In principle, any general non-linear
optimization algorithm may be used to solve Eq. (26) to estimate
the MLE x∗

1:n. We use Ceres-Solver [30] to solve Eq. (26) using the
Levenberg–Marquardt (LM) algorithm [33,34] with Sparse Normal
Cholesky [35] as the linear solver. In this section, we examine the
structure of EnML from the view of the non-linear solver solving
Eq. (26). In particular, we investigate how the concept of episodes
in the VGN translates to the solutions of the non-linear solver, and
how the structure of the problem relates to SLAM and Markov
localization.

The cost function C can be re-cast as

C(x1:n) =
1
2
∥F (x1:n)∥2. (30)

This construction is possible because all of the sub-cost functions
ci (Eqs. (27)–(29)) that comprise C as C =

∑
i(ci) are of the

purely quadratic form ci = aTΣa, as described in Section 5.2.
Therefore, the corresponding entries in F would be Σ−

1
2 a. In this

form, Eq. (26) is rephrased as

x∗

1:n = argmin
x1:n

1
2
∥F (x1:n)∥2. (31)

The solution to this equation is thus a non-linear least squares
optimization. Global solutions to this equation are computation-
ally intractable due to the presence of local minima arising from

Fig. 6. An example robot scenario running EnML. There are 6 poses x0 −X5 denoted
by the triangular robot markers, along with the maximum sensor range denoted by
the translucent orange semicircles. There are four STFs, STF0 − STF3 , shown by the
green circles. The long-term static map is shown by the blue lines.

non-linearities in the arguments a for each sub-cost function ci.
However, the local optimummay be found in the neighborhood of
an initial estimate. For EnML, the initial estimate for the solution
of x∗

1:n is taken from the last estimates of x∗

1:n−1 and the odometry-
predicted estimates of xn.

Non-linear least-squares solutions to Eq. (31) by LM are com-
puted iteratively, with each iteration updating x∗ proportional to
∆x, where ∆x is the solution of the equation

JT J∆x = JT F . (32)

Here, J is the Jacobian of F , the elements of which are given by

Jij(x) =
δFi
δxj

(x). (33)

The matrix JT J is called the information matrix I. The solution to
Eq. (32) may be found by inverting the information matrix, al-
though in practice alternative solutions like the QR decomposition
or LU decomposition of I yield more numerically stable as well as
computationally efficient solutions, in particular for sparse matri-
ces. The structure of the informationmatrix I, as we shall show, in-
dicates the correlations between the poses of the robot in the EnML
episode. We shall also show that the computational complexity of
EnML scales from being comparable to Markov Localization in the
absence of short-term features, to being comparable to pose graph
SLAM when only short-term features are visible.

We present here a simple scenario of EnML running on a robot.
Fig. 6 shows a robot navigating in an environment with four static
unmapped objects. There are six poses of the robot over time, and
at each pose the robot observes one or more of the unmapped
objects, as well as part of the static map. Thus, in this scenario,
there would be 15 sub-cost functions: 5 sub-cost functions co1 − co5
for the odometry between successive poses, 4 sub-cost functions
for the STFs cSTF0 − cSTF3 , and 6 sub-cost functions cLTF0 − cLTF5 for the
LTFs from each pose.

The structure of the Jacobian and the information matrix is
thus as shown in Table 1. Note that in the Jacobian, the entries
corresponding to cost functions span multiple rows for each cost
function, since each cost function depends on multiple observed
points. Furthermore, every entry in the information matrix corre-
sponds to a 3× 3 block, corresponding to the 3 degrees of freedom
of the robot.

There are several interesting features about the structure of the
informationmatrix. It is sparse and nearly block-diagonalwith two
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Table 1
The structure of the Jacobian (left) and the information matrix (right) for EnML
in the example robot scenario. Non-zero entries are marked with a ‘x’, while zero
entries are marked with a ‘.’.

major blocks x0:2×x0:2 and x3:5×x3:5. In fact, the only non-block
diagonal elements arise from the relation between x2 and x3 due to
the odometry sub-cost functions. Note also that in this scenario, x3
would be an episode boundary: all the observations of STFs at and
after pose x3 are independent of the STFs observed before x3. This is
not just coincidence. The existence of episode boundaries enforce
this almost block-diagonal structure to the information matrix by
virtue of the fact that except for odometry, correlations between poses
arise only from STFs, and by definition, no such correlations may
cross the episode boundary. This nearly block-diagonal structure
has a particularly simple sub-solution. Consider the information
matrix I as composed of blocks A, B, C,D such that

I =

[
A B
BT D

]
, (34)

A = JT0:14,0:2 J0:14,0:2, (35)

B = JT0:14,0:2 J0:14,3:5, (36)

D = JT0:14,3:5 J0:14,3:5. (37)

Here, the notation Ja:b,c:d refers to the sub-matrix of J consisting of
rows a to b and columns c to d. The informationmatrix I may then
be inverted by the matrix block-inversion formula,

I−1
=

[
A B
BT D

]−1

(38)

=

[
S−1
D −A−1BS−1

A

−D−1BT S−1
D S−1

A ,

]
(39)

where SA and SD are the Schur complements ofA andD respectively,
given by

SA = D − BTA−1B, (40)

SD = A − BD−1BT . (41)

Let the only non-zero element in the lower left corner of B be given
by b. We now investigate the structure of SA.

SA = D −

⎡⎣0 0 bT

0 0 0
0 0 0

⎤⎦ A−1

[0 0 0
0 0 0
b 0 0

]
(42)

= D −

⎡⎣0 0 bT

0 0 0
0 0 0

⎤⎦
⎡⎢⎣A−1

00 A−1
01 A−1

02

A−1
10 A−1

11 A−1
12

A−1
20 A−1

21 A−1
22

⎤⎥⎦[0 0 0
0 0 0
b 0 0

]
(43)

Table 2
The structure of the Jacobian and the information matrix for EnML in the no-map
example robot scenario.

= D − b2

⎡⎣bTA−1
20 bTA−1

21 bTA−1
22

0 0 0
0 0 0

⎤⎦[0 0 0
0 0 0
1 0 0

]
(44)

= D −

⎡⎣bTA−1
22 b 0 0
0 0 0
0 0 0

⎤⎦ . (45)

Hence the computation of the Schur complements SA, SD are trivial
computations, given A−1 and D−1. Furthermore, for cases where
bTA−1

22 b ≪ D00, the Schur complement may be approximated as
SA ≈ D, further simplifying the inversion of I. The most com-
putationally expensive operations in the inversion of I are there-
fore the computations of A−1 and D−1, which can be computed
independently of each other. Thus, across an episode boundary, the
computations of the inverse of the dominant sub-matrices of I, S−1

D ≈

A−1 and S−1
A ≈ D−1, are independent of each other.

We next examine the example scenario if the robot did not have
a staticmap.We call this the ‘‘no-map’’ example scenario. The three
linear features that would otherwise have been considered LTFs
would instead be considered by EnML to be STFs. The associated
cost functions are denoted by cSTF4 , cSTF5 , cSTF6 . The Jacobian and in-
formation matrix for the no-map example scenario are thus listed
in Table 2. Note that the LTF cost functions are zero for all the
poses. Alternatively, if the robot were running pose graph SLAM
(e.g., [18]), all the features, including what EnML considered to be
STFs and LTFs would be considered landmark features, and give
rise to correlations between the poses. The corresponding Jacobian
and information matrix are thus shown in Table 3. Note that the
structure of the information matrix is identical between EnML in
the no-map scenario, and that of SLAM. Thus, in the absence of a
static map, the structure of the information matrix, and hence the
computational complexity of the Maximum Likelihood Estimation of
EnML is identical to that of pose graph SLAM.

Finally, we consider the case where the STFs are not present
in the example scenario. This is a scenario perfect for Markov lo-
calization. There would be no sub-cost functions of EnML for STFs,
and the corresponding Jacobian and information matrix for EnML
would thus be as given in Table 4. Note here that the information
matrix is band-diagonal in nature, thus allowing efficient inversion
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Table 3
The structure of the Jacobian matrix and the information matrix for pose graph
SLAM in the example robot scenario.

Table 4
The structure of the Jacobian and the information matrix for EnML in the all-
mapped example robot scenario.

of I [36] in O(n) operations for n poses, similar to Markov Localiza-
tion. Thus, in the absence of short-term features, the computational
complexity of EnML is similar to that of Markov Localization.

Thus, the computational complexity of EnML scales from being
comparable to Markov Localization in the absence of short-term
features, to being comparable to pose graph SLAM when only
short-term features are visible.

7. Results

We present three sets of experimental results to evaluate the
performance of episodic non-Markov localization and compare
it with alternative approaches to robot localization in varying
environments. The first two sets of experiments were performed
using data logs collected at the University of Freiburg, and Öre-
bro University, respectively, and are used to perform quantitative
comparisons.2 The third set of experimental results are from the
1000 km Challenge [37], performed with four custom-built robots
called CoBots [4] at Carnegie Mellon University.

7.1. Freiburg-Parkinglot dataset

We compared localization using our approach to localization
using Temporary Maps [21] and Rao-Blackwellized Particle Filters
with Dynamic Occupancy Grids (RBPF-D) [25] by running Episodic

2 The authors would like to thank Gian Diego Tipaldi and Daniel Meyer-Delius for
sharing the Freiburg-Parkinglot dataset, and Tom Duckett for sharing the Örebro-
Longterm dataset.

Table 5
Localization Squared Errors (m2) for the Freiburg-Parkinglot Dataset.

Run Length MCL-GT MCL-S MCL-TM RBPF-D EnML

01 503.33 0.04 0.18 0.25 0.09 0.02
02 497.74 0.03 0.18 0.16 0.08 0.02
03 496.25 0.04 0.09 0.63 0.05 0.02
04 487.80 0.02 0.08 0.63 0.04 0.02
05 494.78 0.02 0.06 0.51 0.03 0.02
06 489.89 0.02 0.09 0.21 0.02 0.02
07 488.10 0.02 0.07 0.44 0.03 0.02
08 488.39 0.02 0.09 0.59 0.02 0.02
09 479.84 0.02 0.07 0.49 0.03 0.03
10 484.06 0.02 0.09 0.32 0.03 0.04
11 484.88 0.03 0.10 0.47 0.05 0.04
12 479.97 0.03 0.15 0.23 0.06 0.05

Total 5875.0 0.03 0.10 0.41 0.04 0.03

non-Markov Localization on the Freiburg-Parkinglot dataset col-
lected on an outdoor robot driven around a parking lot at Univer-
sity of Freiburg [25]. This dataset consists of 12 runs in an outdoor
parking lot over the course of the day totaling over 5.8 km traversed
and presents a challenging environment where there are very few
permanent features and many changes over the course of the day
due to the arrival and departure of cars in the lot. For every run, a
ground truth estimate was determined independently of the other
runs by running static SLAM offline with manual corrections. To
run episodic non-Markov localization on the Freiburg-Parkinglot
dataset we extracted the dominant linear features from the results
of running SLAM on run 01 of the dataset. This map was then used
as the static map for all subsequent runs.

As a baseline, the ground truth maps for each of the runs were
used along with Monte-Carlo Localization to localize the robot for
every run. Table 5 lists the errors in localization with respect to
ground truth for localization using the baseline (MCL-GT), Monte-
Carlo Localization using a static map (MCL-S), Temporary Maps
[21] (MCL-TM), Rao-Blackwellized Particle Filters with Dynamic
Occupancy Grids [25] (RBPF-D), and Episodic non-Markov Lo-
calization (EnML). The entries for MCL-GT, MCL-S, MCL-TM and
RBPF-D are reproduced from the results of [25]. Note that the
baseline approachMCL-GT is intended for illustrative comparative
purposes only: it is the result of performing SLAM from each run,
manually correcting the errors in themap, and then using the same
log for localization usingMCL. Such an approach is neither realistic,
nor feasible, but provides a ‘‘best-case’’ scenario for localization
using MCL on as accurate a map as possible. Episodic non-Markov
localization has smaller mean localization error over all the runs
compared to the other online algorithms includingMCL-S,MCL-TM
andRBPF-D. Over individual runs, EnMLhas lower errors compared
to the other algorithms except for runs 06 and 08 where EnML tied
with RBPF-D; and run 10 where RBPF-D had a lower error. EnML
also outperforms the Monte-Carlo Localization baseline (MCL-GT)
for some of the runs, as a result of EnML using a fundamen-
tally different belief representation and update algorithm than
MCL-GT, which uses a particle filter. Furthermore, as a deter-
ministic algorithm, our approach does not have any variance in
localization over different runs with the same log, unlike the other
algorithms, which are stochastic in nature as variants of particle
filters, and exhibit variance across trials [25]. Fig. 7 shows the
trajectory of the robot during run 11 of the Freiburg-Parkinglot
dataset, as estimated by episodic non-Markov localization and
compared to ground truth.

Fig. 8 shows two selected snapshots of episodic non-Markov
localization running on the Freiburg-Parkinglot dataset. The snap-
shots show the classification of the observations as originating
from LTFs, STFs and DFs. The snapshots demonstrate episodic non-
Markov localization correctly identifying the parked cars as STFs
and the pedestrian and moving car as DFs.
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Fig. 7. The trajectory of the robot during run 11 of the Freiburg-Parkinglot dataset,
as estimated by episodic non-Markov localization (red trace), and compared to
ground truth (dashed black trace). The LTFs, STFs andDFs classified by episodic non-
Markov localization are drawn as orange, purple, and green points, respectively.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

7.2. Örebro-Longterm dataset

We ran episodic non-Markov localization on the Örebro-
Longterm dataset, which has previously been used to empirically
evaluate localization using Dynamic Maps [23], and Dynamic Pose
Graph SLAM [19]. This dataset was collected over a span of five
weeks by driving a robot around an office-like environment, cov-
ering a total distance of 9.6 km.

As in the previous experiment, we estimated the static long-
termmap by running SLAM on the first run. Fig. 9 shows the traces
of the robot as estimated using episodic non-Markov localization
over all the runs. Despite the changes in the environment over the
five-week period, our approach was successfully able to localize
the robot without having to maintain up-to-date maps of the
environment. This experiment demonstrates that even in a varying
environment, using only a static map of LTFs, episodic non-Markov
localization is successfully able to localize a robot without having
to maintain maps of the exact state of the environment.

7.3. Deployments of the CoBots

The CoBots are custom-built robots3 with four-wheel omni-
directional drive bases and off-the-shelf tablet computers as the
computational platforms to run all the algorithms necessary for
them to operate autonomously. We have four CoBots in total,
shown in Fig. 10,whichwere deployed over the 1000 kmChallenge
[37]. The different CoBots have slightly different sensing abilities,
including a 4m laser rangefinder on CoBot 2 and CoBot 3, and 5m
Microsoft Kinect depth cameras on CoBot 1 and CoBot 4. Episodic
non-Markov Localization has been deployed on the CoBots over
755 km out of 1000 km in the 1000 km Challenge, and has been
used to localize the robots in many different environments span-
ning multiple floors across multiple buildings. EnML used obser-
vations from the laser rangefinders on CoBot 2 and CoBot 3, and
observations from the Kinects on CoBot 1 and CoBot 4. We present
here some selected results from the 1000 km Challenge, and the
impact of using EnML over the robot deployments.

3 We thank Mike Licitra for designing and building the robots.

Table 6
Mean Distance Before Interventions (MDBI), in km, using CGR and EnML per map
over the 1000 km Challenge.

CGR EnML

GHC4 0.62 4.42
GHC5 1.23 9.49
GHC6 8.61 9.48
GHC7 5.58 9.02
GHC8 6.04 19.36
GHC9 5.33 20.05

All 4.79 8.13

Table 7
Characteristics of EnML on the floors that the CoBots were deployed on, for the
1000 km Challenge: EP, the median number of poses in each episode; EL, the me-
dian pose length in meters; LTF%, the percentage of observations that were LTFs;
STF%, the percentage of STFs; and DF%, the percentage of DFs.

EP EL LTF% STF% DF%

GHC3 75 4.2 41.5 35.7 16.4
GHC4 80 11.2 12.0 67.7 15.6
GHC5 34 5.5 64.2 23.8 11.9
GHC6 21 3.6 69.6 22.8 6.7
GHC7 19 3.3 73.1 19.5 7.7
GHC8 23 3.4 70.5 22.0 7.0
GHC9 25 3.8 67.2 24.0 7.6
NSH1 59 3.2 56.1 35.2 8.9
NSH2 72 3.1 42.8 44.3 8.9
NSH3 80 3.4 53.2 33.8 9.8
NSH4 29 4.1 67.4 24.2 8.4
NYU19 80 8.3 44.3 44.4 11.2

Over the duration of the 1000 km Challenge, Corrective Gradi-
ent Refinement [5] was used for localization between September
2011 and January 2014 [26], while Episodic non-Markov Local-
ization was used February 2014 onwards. As of July 1st 2015,
the CoBots have autonomously traversed 755 km using Episodic
non-Markov Localization, and continue to autonomously perform
user-requested tasks in our environments on a daily basis. Table 6
compares theMean Distance Before Interventions (MDBI), for each
map in the Gates–Hillman Center building, when using CGR, and
when using EnML for localization. The MDBI is the mean distance
that the robot traversed before an operator intervention was re-
quired, and is thus a measure of the robustness of the autonomy
of the robot. The MDBI for EnML is 8.13 km, which is significantly
higher than the MDBI for CGR, 4.79 km, thus demonstrating the
higher reliability of EnML for localization in real-world human
environments.

The variations in the MDBI across the different floors are due
to the differences in the number of movable objects and variations
over time between the different floors. Table 7 highlights the dif-
ferent characteristics of each floor by enumerating, for each floor:
(1) the median number of poses in each episode of EnML, (2) the
median length of each pose in EnML, (3) the median fraction of
observations that were LTFs, (4) the median fraction of observa-
tions that were STFs, and (5) the median fraction of observations
thatwere DFs. Floors GHC6, GHC7, GHC8, and GHC9were observed
to have the fewest number of unmapped observations (LTFs and
DFs), and hence had correspondingly shorter episodes, with me-
dian pose lengths between 3.3 m and 3.8 m. Floors NSH1, NSH2,
NSH3, and NSH4 were in a building with a large number of shorter
corridors with frequent intersections, resulting in episodes short
in length (between 3.1 m and 4.1 m), but large number of poses
(between 29 and 80 poses) due to frequent rotations. Compared to
GHC6-9, floors NSH1-4 also had more DFs since they have more
human traffic, and more STFs in the form of chairs, tables, and
sofas in the hallways. Floor NYU19 had cubicle areas that were not
included in the static map, and hence EnML discovered the cubicle
walls as numerous STFs: 44.4% of the observations were of STFs,
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Fig. 8. Non-Markov localization on run 12 of the Freiburg-Parkinglot dataset showing (a) a pedestrian and (b) a moving car in the parking lot amidst static parked cars. LTFs
are plotted in orange, STFs in purple, and DFs in green. The robot’s location is shown by the orange marker and its trajectory as gray lines. Both images are 35 m wide. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Combined traces of localization using episodic non-Markov localization on
all runs of the Orëbro-Longterm dataset. The traces are color-coded by time, from
blue (oldest) to red (newest). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

resulting in long episodes. Floor GHC4 was the most challenging
of all floors, with only 12% of the observations corresponding to
LTFs, resulting in very long episodes. Floors GHC4 and GHC5 are
particularly challenging for autonomous robots deployed over long
periods of time. These floors have significant pedestrian traffic,
being on the ground level and connecting different parts of the
campus. GHC4 has an atrium with several unusual large mov-
able lounge chairs which obstruct the robot’s view of the walls.
GHC5 has large areas with tiles which provide for very poor robot
odometry due to wheel slippage. Fig. 11 shows some snapshots of
EnML running on the CoBots while deployed on GHC4, at different
times of the year. Note that the STFs are at different positions
over the different deployments. Fig. 12 shows two examples of
EnML accounting for large unmapped features, a wooden panel of
lockers, and the walls of the helix in the Gates–Hillman Center.

Due to these challenges, prior to the introduction of EnML,
the deployments of the CoBots in GHC4 and GHC5 were severely
limited—the robots frequently required operator intervention as
they got lost or uncertain of their localization. The low values
of MDBI for CGR on GHC4 and GHC5, 0.62 km and 1.23 km re-
spectively (tabulated in Table 6) attest to the frequent operator
interventions on the floors. However, since January 2014 when
EnML was deployed on the robots, they have been deployed with
far greater success, as is shown by the significantly higher values
of MDBI of 4.42 km and 9.49 km on GHC4 and GHC5, respectively.
Table 8 shows the marked difference in the scope of deployments

Fig. 10. CoBots 1, 2, 3 and 4, whichwere used for the 1000 kmChallenge at Carnegie
Mellon University.

Table 8
The contribution of EnML to the deployment of the CoBots on two challenging
floors, GHC4 and GHC5. Over 93% of the distance traversed by the CoBots on GHC4
and GHC5 were with EnML, while only 70.2% of the distance traversed over the
entire 1000 km Challenge over all floors were with EnML.

Floor CGR (km) EnML (km) EnML fraction (%)

GHC4 6.4 88.1 93.2
GHC5 3.0 42.9 93.5
All 320.9 755.4 70.2

of the CoBots in these challenging areas using Corrective Gradient
Refinement [5] and after deploying EnML.While EnML contributed
to 70.2% of the total autonomous distance traversed by the CoBots
over the 1000 km Challenge, on the GHC4 and GHC5 floors, EnML
contributed over 93% of the autonomous distance traversed. The
disproportionately large contributions of EnML to the distances
traversed by the CoBots on GHC4 and GHC5 are entirely due to the
increased reliability and robustness of localization of the robots in
the presence of the abundantmoving andmovable objects on those
floors.

8. Conclusion

In this article, we introduced a representation of the world that
classifies observations as arising from long-term features, short-
term features, or dynamic features. We introduced a graphical
model called the Varying Graphical Network (VGN) to represent
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Fig. 11. Snapshots of EnML running in the GHC4 atrium on different days. The
photograph (a) shows the atrium with large movable couches tables, plants, and
humans. Snapshots (b–d) of Episodic non-Markov Localization show the observed
state on different days. The trajectory of the robot over the episode is shown in gray,
alongwith the covariance ellipses. LTF observations are shown as orange points, STF
observations as purple points, and DF observations as green points. The long-term
static map is shown as blue lines. Note the different placements of the STFs in the
different runs, in particular the couches at the lower end. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 12. Snapshots of EnML running on GHC5, showing unmapped features that are
(a) the walls of the helix ramp, and (b) a wooden panel of lockers. LTF observations
are shown as orange points, STF observations as purple points, and DF observations
as green points. The long-term staticmap is shown as blue lines. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

correlations between observations from different time steps due
to the different classes of observations. We further introduced the
Episodic non-Markov Localization (EnML) algorithm that explicitly
reasons about the different classes of observations to maintain
accurate location estimates of the robot even in the presence of
observations of unexpected objects and the absence of observa-
tions of the static map. We explored the structure of EnML, and
thus compared its computational complexity to SLAM andMarkov
Localization. Finally, we presented results of running EnML on
several datasets and comparing its results to alternate approaches.
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