
Augmenting Planning Graphs in 2-Dimensional Dynamic Environments With
Obstacle Scaffolds

Spencer Lane, Kyle Vedder, Joydeep Biswas
University of Massachusetts Amherst

140 Governors Dr.
Amherst, MA 01003

slane@cs.umass.edu, kvedder@umass.edu, joydeepb@cs.umass.edu

Abstract

In this paper, we present an extension to roadmap based path
planners that allows for finer control over motions near dy-
namic obstacles. We utilize the fact that we know the shape
of the dynamic obstacles offline and the location of the obsta-
cles online. We supplement the roadmap graph by adding pre-
defined graphs around obstacles, known as scaffold graphs.
These graphs are inserted at query time and updated as the
obstacles move throughout the environment. We performed
a preliminary evaluation our approach in the RoboCup SSL
domain and show similar average case performance and im-
proved performance in the case where there are obstacles be-
tween the start and the goal.

Introduction
The ability to find a collision free path between two points
is required for the vast majority of tasks in robotics, regard-
less of the hardware that those tasks are run on. There have
been a variety of solutions to this problem that have been de-
veloped over the years, but we have chosen to focus on do-
mains that have strict timing constraints, require high qual-
ity paths, and where the shape of the dynamic obstacles is
known offline and the locations of the dynamic obstacles are
known online. This kind of domain imposes constraints on
the kinds of solutions that can be used. The RoboCup Small
Size League (SSL) is a good example of a domain with these
properties.

RoboCup SSL is a RoboCup domain that focuses on
multi-agent planning and coordination. Teams consist of 6
robots that use a golf ball as a soccer ball. The game state
evolves rapidly from one moment to the next, so a plan gen-
erated in the previous time step might not be valid. It is also
desirable to update the robot control commands at the same
rate new data is received; thus all processing and planning
should be performed within 16 milliseconds. Finally, be-
cause RoboCup is a competitive domain, it is important that
we produce high quality paths within that time limit.

In order to improve path planning in domains with these
properties, we propose a method of supplementing roadmap
based path planners by constructing roadmaps, called scaf-
folds, around our obstacles offline and inserting them into
the graph when updating the position of those obstacles. We
build on the framework introduced by Leven and Hutchinson
to apply a roadmap path planner in a dynamic environment

(Leven and Hutchinson 2002). Path planning is split into two
steps: offline and online. In the offline step, a roadmap of the
static environment is constructed. During the online step, the
scaffolds around the moving obstacles are inserted and the
edges blocked by obstacles are invalidated.

In order to generate the initial roadmap, we utilize an
existing sampling based path planner such as Probabilistic
Road Map (PRM) (Kavraki et al. 1996), sPRM (Kavraki,
Kolountzakis, and Latombe 1998), or PRM* (Karaman and
Frazzoli 2011).

We begin with a brief review of the related literature. We
then discuss the specific modifications to PRM that we in-
troduce in this work. We discuss the formalisms for PRM
graphs and scaffold graphs, review the primitive functions
used in the construction of PRM graphs, and finally intro-
duce a set of algorithms used for integrating scaffold graphs
with existing roadmaps. Finally, we evaluate the perfor-
mance of our scaffold approach in a variety of situations.

Related Work
PRM was introduced in 1996 as a method of path plan-
ning for robots working in static workspaces (Kavraki et al.
1996). In 1998, Kavraki, Kolountzakis, and Latombe intro-
duced sPRM, which was shown to be asymptotically opti-
mal (Kavraki, Kolountzakis, and Latombe 1998). In 2011,
PRM* was introduced, which created an asymptotically op-
timal version of PRM with a reduced query time (Karaman
and Frazzoli 2011).

Most PRM variant algorithms assume that the workspace
is static; however, a number of approaches exist for apply-
ing PRM in a dynamic environment. An early framework
for doing so was proposed by Leven and Hutchinson (Leven
and Hutchinson 2002). The key insight is to partition of the
workspace into the static environment and the dynamic en-
vironment. Another approach to using PRM in dynamic en-
vironments is to use an RRT-like local planner to reconnect
edges that have become invalid due to obstacles (Jaillet and
Siméon 2004). van den Berg et al. place assumptions about
the motion of obstacles in the environment, restricting them
to a fixed set of configurations known a priori (van den Berg
et al. 2005).

Within the RoboCup domain, it is common to use the ex-
ecution extended RRT (ERRT) algorithm (Bruce and Veloso
2002). This extends RRTs to allow for re-planning in many

situations. ERRT is used due to its fast planning, replanning
and query times. Other approaches are typically not used as
they often take too long to converge to a solution.

PRM and Scaffold Definitions
In this section, we define the formalisms used in our ap-
proach. First, we review the definitions of graphs used in
PRM and introduce the definition of a scaffold graph. Then,
we discuss the primitive functions used in the construction
of PRM graphs and supplement that with a ray cast prim-
itive. Finally, we discuss the scaffold structure for circular
obstacles and n-sided polygons.

Planning Graph
We start by defining a PRM Graph G as a set of edges E
and vertices V . Each edge consists of a tuple e = 〈v1, v2, a〉
where v1, v2 ∈ V and a is a boolean that indicates if the edge
is active. For brevity of notation, ae references that boolean
for edge e. The default value of a is True, and a needs to
be updated whenever the graph is queried as it depends on
the positions of the moving obstacles.

A scaffold graph Si is defined in a manner similar to a
PRM graph with a set of edges Ei and vertices Vi. A par-
ticular scaffold Si is associated with a particular obstacle
oi ∈ O where O denotes the set of all obstacles in the en-
vironment. The positions of the vertices are defined relative
to the obstacle. A transform Ti is defined that maps points
from the obstacle reference frame to the planning frame.

This transform must consist solely of rotation and trans-
lation. The translation must be defined relative to the center
of the obstacle. We define ci to be the center of oi

We also define a radius ri which defines the bounding cir-
cle around the obstacle. For the sake of convenience, we re-
fer to the kth point of the jth layer of scaffold i as vi,j,k.

Each scaffold consists of a number of layers with the layer
closest to the obstacle being defined as layer 1 and the outer-
most layer being defined as layer N , where N is the number
of scaffold layers. Scaffolds can be a single layer. We de-
fine a subset of the full scaffold graph Si,j to be the the set
of edges and vertices on the jth level of scaffold i. We also
define the number of points per scaffold layer to be m.

A particular scaffold layer Si,j defines a convex polygon
that encloses the associated obstacle at a fixed distance di,j .
Each point within that layer must be di,j away from the ob-
stacle.

Scaffolds From Geometric Primitives
Circle In order to define a scaffold around a circle, we be-
gin by defining the distance from the obstacle that the low-
est layer occupies. Because the points on a scaffold layer are
equidistant from the center point of the circle, the closest
point to circle is the mid-point of the line segment defined
by two points. If we set the distance between the mid-point
and the center point of the obstacle to be the radius of the ob-
stacle, we can derive an equation for the radius of the lowest
layer:

di,1 =
2ri

(2cos
(
2π
m

)
+ 2)

1
2

− ri (1)

We can then define the ith point of the jth layer as:

vi,j,k =

[
(di,j + ri) ∗ cos(θi,j,k)
(di,j + ri) ∗ sin(θi,j,k)

]
θi,j,k = (k − 1) ∗ 2π

m
+ ((j − 1) mod 2) ∗ 2π

2m

(2)

The second term of the angle computation is used to give
each point a slight offset from those on the previous layer.
We can then define the set of edges to and from a given point.
We use the ⇀↽ operator to show that an edge exists. We con-
nect the points as follows:

When j is even:
vi,j,k ⇀↽ {vi,j−1,k, vi,j+1,k, vi,j−1,k+1, vi,j+1,k+1,

vi,j,k+1, vi,j,k−1}
(3)

When j is odd:
vi,j,k ⇀↽ {vi,j−1,k, vi,j+1,k, vi,j,k+1, vi,j+1,k−1,

vi,j,k−1, vi,j−1,k−1}
(4)

In all cases:
vi,j,0 = vi,j,m, vi,j,m+1 = vi,j,1 (5)

Edges to vertices where j = 0 and j = N + 1 are ob-
viously ignored as those vertices do not exist. A completed
circle scaffold is shown in Figure 1a. Note that the circular
obstacle is inflated such that a robot can sit on any of the
scaffold points without colliding with the obstacle.

(a) Circular Scaffold (b) Rectangular Scaffold

Figure 1: Example scaffolds for geometric shapes. The num-
ber of layers is fixed to be 4 and the number of points per
layer is fixed to be 16.

Convex Polygon In order to define a scaffold around a
convex polygon, we first define the number of sides to be
s. We impose the constraint that the number of points per
scaffold layer, m, must be a multiple of s. We define the
corner points of the polygon to be p1, p2, . . . ps. The corners
of the polygon edge i are defined to be pi and pi+1 with
the corners of edge s being ps and p1. We also define the
unit normals of the various sides and corners with n̂i repre-
senting the normal of side i and n̂pi representing the normal
vector at corner pi.

In order to space the points evenly throughout the scaf-
fold, we divide the points evenly between the sides of the
polygon. There arem/s−s scaffold vertices associated with

each side and s vertices associated with the corners. For ex-
ample, a rectangle with 16 points per layer would have one
point on each layer associated with each corner and 3 points
per layer associated with each side.

If we associate vi,j,1 with p1, vertices are associated with
corner points when s(k−1)modm = 0 and with sides other-
wise. In order to define the position of the vertices associated
with the corners or side, we first need to derive an expression
for determining which side a vertex is associated with based
on its index k. We will define the index of the side as κ. The
corner points associated with side κ are then pκ and pκ+1.
The value of κ is defined as follows:

κ = b(k − 1) ∗ s
m
cmods+ 1 (6)

Where bc is the floor operator. The vertices associated
with a corner points have their positions defined as follows:

vi,j,k = pκ + di,j n̂pκ (7)
Where di is the distance of that layer from the obstacles

and the d0 = 0. We also define the position of the points
associated with each side as follows:

λi,j,k =
k − 1−m(j − 1)− m

s (κ− 1)

m/s

vi,j,k = λi,j,k||pκ+1 − pκ||+ pκ + din̂j

(8)

Where λi,j,k represents the fraction along the line that the
vertex covers. Using this notation, we can define set set of
edges to and from a given scaffold vertex. We connect each
vertex to the adjacent vertices.

vi,j,k ⇀↽ {vi,j−1,k, vi,j+1,k, vi,j+1,k−1, vi,j+1,k+1,

vi,j,k−1, vi,j,k+1, vi,j−1,k−1, vi,j−1,k+1}
(9)

As before, in all cases:
vi,j,0 = vi,j,m, vi,j,m+1 = vi,j,1 (10)

Again edges to vertices where j = 0 and j = N + 1 are
ignored. A completed scaffold for a rectangle is shown in
Figure 1b. Note that the obstacle is inflated such that a robot
can sit on any of the scaffold points without colliding with
the obstacle.

Navigation and Planning with Scaffolds
In this section, we examine how to incorporate scaffold
graphs into path planning algorithms. As with other PRM
approaches designed to be used in dynamic environments,
we partition the obstacles into two sets, static obstacles and
dynamic obstacles. The static obstacles, those that have a
fixed location, are the only ones that are taken into account
when generating the initial roadmap. Up until this point, we
have only discussed using this approach with PRM. In prac-
tice, the scaffolds can be added to any roadmap based graph.
This initial graph could be generated using a PRM variant
or it could be generated using a different roadmap approach
such as a fixed grid or a Vornoi decomposition. Because the
method used to generate the roadmap does not affect the ap-
plication of the roadmap, we instead focus on defining an
algorithm for updating the graph with the scaffold points. In
order to define an initial approach to combining the graphs,
we first review the primitive functions used in RRT and PRM
and we then define a naı̈ve graph update algorithm.

Primitive Functions
The existing PRM and RRT approaches rely on several prim-
itive functions. These are sampling, nearest neighbor, near
vertices, steering, and a collision test. These are well de-
scribed in the literature but we will review the two that we
use in the scaffolding approach.

Near Vertices: The Near(G, p, r) method returns the set
of vertices that are within a given distance of a particular
point. It takes as input a graph G, a point in space p, and a
positive real number r. It returns the set of all vertices v ∈ V
that are within r of the specified point p.

Collision Test: The CollisionFree(p1, p2) method
returns a boolean that indicates if the line segment between
p1 and p2 does not collide with any obstacles.

Graph Update
We separate the graph update into two steps. First, the scaf-
fold points and edges are added to the static graph, then any
edges that are blocked are invalidated.

The scaffold points are inserted into the graph in the same
way that new points are added when generating a roadmap
using sPRM. Each point is connected to all of the other
points within a certain range of it as long as the line between
the two points does not collide with an obstacle. When in-
serting the scaffolds, we ignore the other points within the
scaffold as there are already edges defined between these
points. Algorithm 1 presents the procedure for inserting a
scaffold into the static graph.

Algorithm 1 SCAFFOLD INSERTION

1: procedure INSERTSCAFFOLD(G,Si)
2: Input: Roadmap Graph G and scaffold graphs Si
3: Output: Updated graph G that contains the scaffold

points and edges
4: for all v ∈ Vi do
5: Add v to V
6: neighbors← Near(G, v, Max Edge Length)
7: for all vnear ∈ neighbors do
8: if CollisionFree(v, vnear) then
9: Add edge from v to vnear

10: for all e ∈ Ei do
11: Add e to E

Finally, we define the method that invalidates the blocked
edges. We perform this invalidation by setting the a indica-
tor for edges that are blocked by dynamic obstacles. As men-
tioned above, an edge is defined by a tuple e = 〈v1, v2, a〉.
We use v1,e, v2,e and ae to refer to the tuple values for a par-
ticular edge e. In order to update the graph, we check each
edge to see if it collides with an obstacle. This is done by
calling the CollisionFree primitive for each edge.

Note that this approach can be further optimized and is
part of our ongoing research.

Experimental Methodology
In order to evaluate our approach, we compare it against
an existing PRM approach, specifically sPRM. We evaluate

(a) Path Quality, Open Box (b) Path Quality, Wall (c) Path Quality, Narrow Passage

Figure 2: Path quality over the number of vertices in the base graph for the fixed configurations

performance in a number of specific obstacle configurations
as well as random field configurations. The specific con-
figurations were designed to showcase the performance of
our approach as compared to the standard algorithms. These
configurations consist of a partial box, a narrow opening
and a wall. While these configurations are not going to oc-
cur during the course of a RoboCup match, they are used to
showcase the behavior of the scaffolds in traditionally chal-
lenging configurations. In each case, we evaluated each al-
gorithm with randomly generated goal locations. The fixed
configurations are shown in Figure 3.

(a) Open
Box (b) Wall

(c) Narrow
Passageway

Figure 3: Obstacle layouts. The start point is shown in green.
The obstacles are shown in red.

In order to directly compare scaffolding and sPRM, we
create a base random graph of varying granularity ranging
from 100 vertices to 2500 vertices. This graph is used for
both approaches. We then add a number of vertices to the
sPRM graph such that it has the same number of vertices as
the base graph with the scaffolds added. We then compare
the mean path lengths for both cases. A particular trial is
only included in the mean calculation if solutions are found
for both the scaffold PRM and sPRM graphs. We also com-
pare the success rate as a function of the number of vertices
and the ratio of the run times. For the fixed configurations
we ran 100 trials at each level of granularity.

Preliminary Results and Conclusions
Figure 2 shows the path quality over the number of vertices
for each of our configurations. The dotted lines and shaded

areas represent 95% confidence intervals. In all three cases,
the variance and mean starts significantly higher for the scaf-
folding approach than for sPRM but decreases as the number
of vertices increases. In the case of the open box and wall
configurations, the found solutions for graphs with more
than 700 vertices are significantly better for the scaffold ap-
proach. In the case of the narrow pathway configuration, the
scaffolding approach performs essentially the same as the
sPRM approach. We believe these results can be attributed
to the fact that the optimal path for the open box and wall
configurations involves traversing obstacles whereas the op-
timal path for the narrow passageway that we constructed
does not.

In addition to examining the path quality, we tabulated the
amount of time it took to update the roadmap and find a path
from the start to the goal. Over all of the cases, the update
time with the scaffold took an average of 1.72 times as long
as without. We are actively working on a more computation-
ally efficient insertion algorithm that we believe will reduce
the graph update time.

We believe that these preliminary results demonstrate that
the scaffold graph approach provides an advantage over
simply using a PRM graph in dynamic environments with
known dynamic obstacle shapes. If the update time can be
reduced, the scaffold approach presented here should pro-
vide benefits in RoboCup SSL and other similar domains.

In the future, we would like to extend the scaffold defini-
tion to obstacle shapes that are not circles or n-sided convex
polygons. In particular, we want to use the distance trans-
form in order to define scaffolds around arbitrary shapes. In
addition, we would like to extend the notion of scaffolds to
higher dimensional spaces. In particular, we believe that this
approach could assist with manipulation in cluttered envi-
ronments and with multi-agent path planning in two dimen-
sional spaces.

References
Bruce, J., and Veloso, M. 2002. Real-time randomized
path planning for robot navigation. In Intelligent Robots and
Systems, 2002. IEEE/RSJ International Conference on, vol-
ume 3, 2383–2388. IEEE.
Jaillet, L., and Siméon, T. 2004. A prm-based motion plan-
ner for dynamically changing environments. In Intelligent
Robots and Systems, 2004.(IROS 2004). Proceedings. 2004
IEEE/RSJ International Conference on, volume 2, 1606–
1611. IEEE.
Karaman, S., and Frazzoli, E. 2011. Sampling-based algo-
rithms for optimal motion planning. The international jour-
nal of robotics research 30(7):846–894.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE transactions
on Robotics and Automation 12(4):566–580.
Kavraki, L. E.; Kolountzakis, M. N.; and Latombe, J.-C.
1998. Analysis of probabilistic roadmaps for path planning.
IEEE Transactions on Robotics and Automation 14(1):166–
171.
Leven, P., and Hutchinson, S. 2002. A framework for real-
time path planning in changing environments. The Interna-
tional Journal of Robotics Research 21(12):999–1030.
van den Berg, J. P.; Nieuwenhuisen, D.; Jaillet, L.; and Over-
mars, M. H. 2005. Creating robust roadmaps for motion
planning in changing environments. In Intelligent Robots
and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ Interna-
tional Conference on, 1053–1059. IEEE.

