
A Real-Time Solver For Time-Optimal Control Of
Omnidirectional Robots with Bounded Acceleration

David Balaban, Alexander Fischer, and Joydeep Biswas1

Abstract— We are interested in the problem of time-optimal
control of omnidirectional robots with bounded acceleration
(TOC-ORBA). While there exist approximate solutions for such
problems, and exact solutions with unbounded acceleration,
exact solvers to the TOC-ORBA problem have remained elusive
until now. In this paper, we present a real-time solver for true
time-optimal control of omnidirectional robots with bounded
acceleration. We first derive the general parameterized form
of the solution to the TOC-ORBA problem by application of
Pontryagin’s maximum principle. We then frame the boundary
value problem of TOC-ORBA as an optimization problem over
the parameterized control space. To overcome local minima and
poor initial guesses to the optimization problem, we introduce
a two-stage optimal control solver (TSOCS): The first stage
computes an upper bound to the total time for the TOC-
ORBA problem and holds the time constant while optimizing
the parameters of the trajectory to approach the boundary
value conditions. The second stage uses the parameters found
by the first stage, and relaxes the constraint on the total
time to solve for the parameters of the complete TOC-ORBA
problem. Furthermore, we implement TSOCS as a closed loop
controller to overcome actuation errors on real robots in real-
time. We empirically demonstrate the effectiveness of TSOCS
in simulation and on real robots, showing that 1) it runs in
real time, generating solutions in less than 0.5ms on average;
2) it generates faster trajectories compared to an approximate
solver; and 3) it is able to solve TOC-ORBA problems with non-
zero final velocities that were previously unsolvable in real-time.

I. INTRODUCTION

Omnidirectional robots find use in a variety of domains
where high maneuverability is important, such as indoor
service mobile robots [1], robot soccer [2], and warehouse
automation [3]. Such robots rely on one of several wheel
designs [4] to decouple the kinematic constraints along the
three degrees of freedom, two for translation and one for
rotation, necessary for motion on a plane. The dynamics
of the omnidirectional drive is constrained by the specific
layout of the wheel configuration, and the drive motor char-
acteristics. Owing to the complexity of modelling the angle-
dependent dynamic constraints imposed by every motor,
omnidirectional drive systems may be simplified as having
acceleration and velocity that are bounded uniformly in all
directions [5]. However, despite such simplifications, the
solution to the time-optimal control of omnidirectional robots
with bounded acceleration remains elusive: while there have
been time-optimal solutions for omnidirectional robots with
unbounded acceleration [6], and approximate solutions to

1The authors are with the University of Massachusetts Amherst, USA.
Email: {dblaban, afischer, jbiswas}@umass.edu. This
work is supported in part by AFRL and DARPA under agreement #FA8750-
16-2-0042, and NSF grant IIS-1724101.

time-optimal control with bounded acceleration and bounded
velocity [5], until now, there has been no solution to the true
time-optimal control of omnidirectional robots with bounded
acceleration.

In this paper, we present an algorithm for true time-
optimal control of an omnidirectional robot with bounded
acceleration (TOC-ORBA) but unbounded velocity. By ap-
plying Pontryagin’s maximum principle to the dynamics of
the omnidirectional robot with bounded acceleration, we
derive the necessary conditions for the solution to the TOC-
ORBA problem, and the adjoint variables of the problem.
By analyzing the adjoint-space formulation, we derive the
parametric form of a solution to the TOC-ORBA problem.
Given a specific problem with initial and final conditions,
we frame the TOC-ORBA problem as a boundary-value
problem, to solve for the parameters of the optimal trajectory
that satisfy the initial and final conditions.

However, this boundary value problem cannot be solved
analytically, and direct application of optimization solvers
result in poor convergence rates and sub-optimal local min-
ima [7]. We therefore decouple the full solution into two
stages to overcome local minima. In the first stage, we first
compute the upper bound for the total time of the TOC-
ORBA problem by decomposing the problem into three lin-
ear motion segments that are always solvable analytically, but
which will be sub-optimal. We hold the total trajectory time
constant at this upper bound, and solve for the parameters
of the trajectory to approach the boundary value conditions.
Since the total time is held constant in the first stage, it may
not be able to exactly satisfy the boundary conditions, but
will typically find the correct shape of the optimal trajectory.
In the second stage, we use the first stage solution as an initial
guess, relax the constraint on the total time, and solve for
the parameters that exactly satisfy the boundary conditions.
Thus, our two-stage optimal control solver (TSOCS) is able
to compute exact solutions to the TOC-ORBA problem.

We further show how TSOCS can be modified for practical
use in an iterative closed-loop controller for real robots with
inevitable actuation errors. We demonstrate the closed-loop
TSOCS controller running in real time at 60Hz on real
robots, taking 0.5ms on average to solve the TOC-ORBA
problem. We present results from experiments over extensive
samples from the TOC-ORBA problem space with simulated
noisy actuation, as well as on real robots. The evaluation
of TSOCS shows that it outperforms existing approximate
solvers [5], and that it can solve for, and execute time-
optimal trajectories with non-zero final velocities, which
were previously not solvable. We further demonstrate how

varying a hyperparameter in the TSOCS controller can be
used to trade-off accuracy in final location vs. final velocity.

II. BACKGROUND AND RELATED WORK

Omnidirectional robots, also referred to as holonomic
drive robots, are governed by the following system of or-
dinary differential equations:

dx1
dt

= x3,
dx2
dt

= x4,
dx3
dt

= u1,
dx4
dt

= u2 (1)

where x1, x2 are the Cartesian coordinates of the robot’s
position, x3, x4 are the robot’s velocity and u1, u2 are the
accelerations along the x1 and x2 directions respectively.
The velocity and acceleration of the robot are limited by
the maximum speed and torque of the driving motors. While
such limits are dependent on the number of omnidirectional
wheels on the robot and their orientations [5], we consider
orientation-independent bounds as the minimum possible
bound in any orientation [5]:

(u21 + u22)
1
2 ≤ umax, (x23 + x24)

1
2 ≤ vmax (2)

The initial state of the system is denoted by xIi , for all state
coordinates i ∈ [1, n], and the final state by xiF , i ∈ [1, n].
The objective of the time-optimal control (TOC) problem
is to find an optimal control input function u∗(t) among
all admissible control functions which drives the system
along an optimal trajectory x∗(t), 0 ≤ t ≤ T ∗ such that
x(T ∗) = xF and T ∗ is minimized. Here we outline com-
mon strategies for solving optimal robotic control problems,
describe previous work done on omnidirectional robots, and
explain the contributions of this paper.

There are three main strategies employed to solve optimal
control problems of this type. The first uses system dynamics
to find an analytical solution with Pontryagin’s Maximum
Principle (PMP) [8]. This approach has been used in the
control of two-wheeled robots [9], two-legged robots [8]
and robots with a trailing body [10]. A second approach
solves the system numerically as an optimization problem–
controlling the joint angles of a robot along a predefined path
can be solved as a convex optimization [11]. A recurrent
neural network can be used to satisfy Karush-Kuhn-Tucker
conditions [12] on a dynamic structure known as a stewart
structure [13]. The third approach is to discretize space
and/or time and search for an optimal solution. This approach
can be used to find time optimal paths that avoid collisions
between coordinating robots with predefined paths [14]. The
discretization method is common for path planning [15].

No time-optimal solution has been found for omnidirec-
tional robots which accounts for constraints on velocity and
acceleration. However, there have been successful solutions
which either relax the constraints on the problem or find ap-
proximate solutions. A linearized kinematic model [16] and
non-linear controller [17] can enforce wheel velocity con-
straints. An analytical near-time-optimal control (NTOC) [5]
accounts for both the acceleration and velocity constraints;
however, if the wheel velocity constraints are considered, but
acceleration is left unbounded, time optimal solutions follow

certain classes of optimal trajectories [18] with analytical
solutions [6]. Previous work found the solution form to
time-optimal control of omnidirectional robots with bounded
acceleration (TOC-ORBA) and unbounded velocity [7], and
we build upon this work and introduce a real-time solver
capable of reliably solving the TOC-ORBA problem. With
this solver, an omnidirectional robot can reach goal states
with non-zero velocity, which the previous state-of-the-art
NTOC [5] could not solve.

III. SOLUTION FORM FOR TOC-ORBA

Pontryagin’s maximum principle (PMP) [8] provides nec-
essary conditions for the optimal control u∗(t) to minimize
T . PMP for TOC problems is stated in terms of the Hamil-
tonian of the system,

H(Ψ,x,u) = −1 +

n∑
i=1

ψi
dxi
dt
, (3)

where Ψ = ψ1, . . . , ψn are the adjoint variables of the system
constrained by the following ODEs:

dψi
dt

=
∂H

∂xi

dxi
dt

=
∂H

∂ψi
(4)

PMP states that the optimal control u∗ must maximize the
Hamiltonian among all admissible control inputs u at every
time step t: H(u∗) = arg maxuH(u). For omnidirectional
robots with bounded acceleration, the Hamiltonian is

H(Ψ,x,u) = −1 + ψ1x3 + ψ2x4 + ψ3u1 + ψ4u2, (5)

and the adjoint variables Ψ = ψ1, ψ2, ψ3, ψ4, constrained by
Eq. 4, must satisfy: dψ1

dt = 0; dψ2

dt = 0; dψ3

dt = ψ1; dψ4

dt = ψ2

Thus, the adjoint variables ψ1, ψ2 are constant in time, and
ψ3, ψ4 vary linearly with time, yielding

ψ1 = α1 ψ2 = α2

ψ3 = α1t+ α3 ψ4 = α2t+ α4. (6)

The constants ~α = {α1, α2, α3, α4} in the expressions for
Ψ depend on the boundary conditions x(0),x(T) of the
problem. We reformulate the control variable as

u1 = a cos θ, u2 = a sin θ. (7)

The Hamiltonian of the reformulated problem is thus

H = −1 + ψ1x3 + ψ2x4 + a(ψ3 cos θ + ψ4 sin θ). (8)

Since the Hamiltonian is linear with respect to a, from PMP,
the time-optimal radial acceleration a∗ is given by,

a∗ = umax sign(ψ3 cos θ + ψ4 sin θ), (9)

This expression gives us the first insight to the problem:
Property 1: The magnitude of the time-optimal acceleration
is always equal to the acceleration bound of the robot.

To find the optimal values of θ, we find the extrema of
the Hamiltonian with respect to θ:

∂H

∂θ

∣∣∣∣
θ=θ∗

= 0 =⇒ θ∗ = atan2(ψ4, ψ3) (10)

This expression gives us the second insight to the problem:
Property 2: The direction of the time-optimal acceleration
is parallel to the line joining the origin and (ψ3, ψ4).
θ∗ will always point towards (ψ3, ψ4). However, it could

be possible that a∗ is negative, in which case the direction
of the time-optimal acceleration would point away from
(ψ3, ψ4). Given θ∗ we can find expressions for sin θ∗ and
cos θ∗, then use Eq. 9 to get the third property:

a∗ = umax sign

(
ψ2
3 + ψ2

4√
ψ2
3 + ψ2

4

)
= umax (11)

Property 3: a∗ = umax is always positive, so the accelera-
tion always points in the direction of the point (ψ3, ψ4).

The adjoint variables make a parametric line, with linear
dependence on time (Eq. 6). The acceleration always lies on
a circle with radius umax, with its direction pointing towards
the corresponding point on the adjoint line.

For the remainder of this section, we let umax = 1 without
loss of generality for ease of readability. From Eq. 7 and
Eq. 11 we get the form of the optimal control in Cartesian
Coordinates as a function of the adjoint variables:

u∗1 =
ψ3√

ψ2
3 + ψ2

4

, u∗2 =
ψ4√

ψ2
3 + ψ2

4

, (12)

We choose coordinate axes such that the robot always starts
from the origin with an initial velocity vI1 and vI2 . For
ease of readability, we rename the variables x3 and x4 as
v1 and v2 to reflect their role as the velocity in the x1
and x2 directions. We also use boldface vector notation,
x = [x1 x2]T ,v = [v1 v2]T ,u = [u1 u2]T . We find the
velocity v by integrating the control function over time and
the position x by integrating the resulting velocity over time.

A. Solution to TOC-ORBA as a Boundary-Value Problem
From Eq. 12, the optimal control is symmetric in the

adjoint variables, therefore the time-optimal solution to u1
and u2 will also be correspondingly symmetric. We thus
derive the expressions for the position x1 and velocity v1,
noting that the expressions for x2 and v2 will be symmetric
in form with a change of variable from α1, α3 to α2, α4. Let

p =

[
α3

α4

]
, q =

[
α1

α2

]
, and make the following abbreviations:

h1 =
√

Ψ2
3 + Ψ2

4 h2 = h1||q||+||q||t2 + p · q

h3 = ||p|| ||q|| + p · q γ =
h2
h3

(13)

The velocity and position can then be expressed as below:

v1(t,p,q) = vI1 + α1
h1 − ||p||
||q||2 + α2

det(p q)

||q||3 ln(γ)

x1(t,p,q) = xI1 + vI1 t+
α1

2||q||5
(
h1
(
||q||p · q + t||q||3

)
+ ||p× q||2ln(γ)− ||p||

(
||q||p · q + 2t||q||3

))
+
α2 det(p q)

||q||3
(

ln(γ)

(
t+

p · q
||q||2

)
− h1 − ||p||

||q||

)
(14)

We now have an expression for each of the four state
variables (x1(t), x2(t), v1(t), v2(t)) describing the optimal
trajectory given values for ~α at any desired time t : [0, T].
To solve the TOC-ORBA problem we therefore must find the
parameters ~α, T such that they satisfy the boundary condi-
tions: x(~α, T) = xF ,v(~α, T) = vF for given values of xF

and vF . By design, the initial conditions x(~α, 0) = xI =
0,v(~α, 0) = vI are already satisfied for any given values
of vI . We can solve this system of equations as a boundary
value problem (BVP) with four non linear equations from
the final conditions constraining the five parameters.

IV. SOLVING TOC-ORBA BY NONLINEAR
LEAST SQUARES OPTIMIZATION

TOC-ORBA can be solved by evaluating the nonlinear
least squares optimization problem

~α∗, T ∗ = arg min
~α,T

FBV(~α, T), (15)

FBV(~α, T) = ||xF − x(~α, T)||2+||vF − v(~α, T)||2,
where FBV is the cost function that penalizes control param-
eters that violate the boundary value constraints.

We derive an upper bound on the optimal time T ∗ for
the TOC-ORBA problem by decomposing the 2D motion
control problem into the following sequence of 1D problems:
1) First, the robot accelerates to rest if it has initial velocity.
2) Second, the robot moves to the point from which it can
directly accelerate to the goal state (location and velocity)
from rest. 3) Third, the robot accelerates directly to the goal
state. The upper bound on T ∗ is thus the sum of the time
taken for all three steps, given by:

Tmax =
||vI ||+||vF ||

umax
+ 2

√∥∥∥∥ xF

u2max

− vF ||vF ||+vI ||vI ||
2u3max

∥∥∥∥
(16)

For an initial guess of the parameters, we project the
initial and goal velocities onto the displacement vector of
the start and goal locations, and solve the corresponding one-
dimensional time-optimal control problem. Regardless of the
initialized parameters, non-linear least-squares optimization
is not guaranteed to find a correct solution if the cost function
contains local minima.

Fig. 1 shows a visualization of FBV for an example TOC-
ORBA problem. The global minimum is in the center of
the center panel, and there is a local minimum in the area
near T = 0. Fig. 2 shows the path corresponding to the
local minimum, which was obtained by running the nonlinear
least-squares solver from a random initial guess.

A. Two-Stage Solver For TOC-ORBA

To avoid the problem of local minima, we split the solver
into two stages: stage 1 holds T constant at the computed
upper bound (Section IV) and minimizes the cost function
FBV; and stage 2 takes the parameter set found by stage 1
as an initial guess and minimizes FBV further by allowing T
to vary. We call this solution the two-stage optimal control
solver (TSOCS). Despite the fact that stage 1 is unlikely

α2: 0.99

α2: 0.83

α2: 0.66

α2: 0.50

α2: 0.33

α1: 1.90 α1: 2.86 α1: 3.81 α1: 4.76 α1: 5.71

α4 α4 α4 α4 α4

−2.33 −0.78−2.33 −0.78−2.33 −0.78−2.33 −0.78−2.33 −0.78

T

T

T

T

T

0.04

7.63
0.04

7.63
0.04

7.63
0.04

7.63
0.04

7.63

Fig. 1: Visualization of FBV with α3 = −6.81. In each panel
α4 varies along the x axis and T along the y axis. Darker
colors correspond to lower cost.

Fig. 2: An example TOC-ORBA problem: solutions found
by the different solvers, compared to the optimal and initial
paths given a poor initial guess; arrows show direction and
relative magnitude of final velocity.

to find a valid solution, the parameter set found typically
provides an initial guess to stage 2 within its optimal basin
of attraction. Fig. 2 shows the paths corresponding to the
local minimum and the global minimum found by TSOCS.

B. Iterative Closed-Loop Control

A real omnidirectional robot will have actuation errors,
which will perturb it from the desired trajectory. To overcome
such actuation errors, we present an iterative closed-loop
controller using TSOCS, which re-solves the TOC-ORBA
problem with new observations at every time-step.

Algorithm 1 lists IterativeTSOCS, which implements iter-
ative closed-loop control using TSOCS. Given the desired
final location and velocity xF ,vF , IterativeTSOCS first
computes the initial guess to the optimal control parameters
~α, T (line 3). Next, it executes the iterative control loop
until the robot reaches the desired final location and veloc-
ity (line 4). At each time-step, IterativeTSOCS updates the
current state of the robot based on new observations (line 18),

and computes a new initial guess for the optimal control
parameters by moving the initial adjoint point forward along
the adjoint line (line 15–line 17) by the time-period ∆T .

To prevent frequent backtracking due to small actuation
errors, IterativeTSOCS runs an variant of the TSOCS second
stage solver with a modified cost function Fit,

Fit =||xF − x(T)||2+β||vF − v(T)||2+k1e
k2(T/Te−τ),

β = max

(
1− ||v

F − vI ||
umaxTe

, βmin

)
. (17)

Fit modifies the boundary value cost function (Eq. 16) by
including a regularization cost for the total time T , and a dis-
count factor β for the velocity error. The time regularization
term, k1ek2(T/Te−τ), grows large if T becomes more than τ
times Te, the expected time based off the previous iteration’s
time. This prevents the robot from backtracking to correct for
small actuation errors, which would take much more time
that following the original trajectory. We chose τ = 1.4 in
our experiments on real robots. The discount factor β for
the velocity error allows IterativeTSOCS to reach the final
state with small errors in velocity while maintaining location
accuracy, which would have been otherwise dynamically
infeasible for the robot to correct without backtracking. β
decreases as the problem becomes near one-dimensional,
because TSOCS fails on near one-dimensional cases more
frequently.

If any iteration fails to find path using the paremeter guess
from the updated adjoint line, then IterativeTSOCS runs the
full two-stage solver on that iteration, with the second stage
using the cost function in Eq. 17. If that fails as well, then
IterativeTSOCS resorts to following open loop control from
the last successful parameter set found.

Algorithm 1 Iterative TSOCS

1: procedure ITERATIVETSOCS(xF ,vF)
2: xI ,vI ← Observe()
3: 〈~α, T 〉 ← Stage1(xI ,vI ,xF ,vF)
4: while ||xI − xF ||> εx ∧ ||vI − vF ||> εv ∧ T > ∆T do
5: 〈~αn, Tn, Fit〉 ← Stage2It(xI ,vI ,xF ,vF , ~α, T)
6: if Fit < εcost then
7: 〈~α, T 〉 ← 〈~αn, Tn〉
8: T ← Tn

9: else
10: 〈~αn, Tn〉 ← Stage1(xI ,vI ,xF ,vF)
11: 〈~αn, Tn, Fit〉 ← Stage2It(xI ,vI ,xF ,vF , ~α, T)
12: if Fit < εcost then
13: 〈~α, T 〉 ← 〈~αn, Tn〉
14: Execute(~α)
15: ~α.α3 ← ~α.α3 + ~α.α1∆T
16: ~α.α4 ← ~α.α4 + ~α.α2∆T
17: T ← T −∆T
18: xI ,vI ← Observe()

After Stage2It recomputes the optimal control parameters
~α (line 5), the robot executes the control for the time-step
according to the updated parameters ~α (line 14).

V. EXPERIMENTAL RESULTS

We performed ablation tests in simulation to see how
different parts of TSOCS affect its success rate. We also

−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8 1.0
X1 (m)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

X
2
(m

)

(a) Zero final velocity

−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
X1 (m)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

X
2
(m

)

(b) Non-zero final velocity
Fig. 3: Examples of TSOCS and NTOC run on real robots.
Yellow is the optimal path computed by TSOCS, blue is the
path taken by real robots runnings TSOCS, and red is the
path taken by real robots running NTOC.

performed experiments in simulation and on real robots to
evaluate 1) the execution times for TSOCS, 2) its accuracy
at reaching final locations and velocities, and 3) the tradeoff
between location and velocity accuracy for trajectories with
non-zero final velocities. For the experiments with zero final
velocities, we compared the results of TSOCS to NTOC.

a) TSOCS implementation: We implemented TSOCS
in C++ using Ceres-Solver [19] as the nonlinear least-
squares optimizer. Our implementation took an average of
0.38ms to solve the TOC-ORBA problem for each iteration
of closed loop control (Section IV-B), with some iterations
taking as long as 9ms. The controller runs at 60Hz, so
our implementation is able to execute within the timing
constraints for real-time control.

b) Experiments in simulation: We simulated omnidi-
rectional robots with actuation noise at every time step
such that v(t) = vu(t) ∗ η(1, n) where vu is the expected
velocity from executing the control and n is the noise level.
TSOCS is run without regularization and with β = 1 at
all times in simulation. For comparing TSOCS to NTOC
with problems with zero final velocity, we generated 10,000
random problems by sampling initial locations and velocities
of the robot and setting the desired final location to the
origin at rest. For evaluating the performance of TSOCS with
problems with non-zero final velocities, we generated 10,000
problems by sampling initial locations and velocities, and
setting the desired final location to the origin, with randomly
sampled final velocities.

c) Experiments with real robots: We use four-wheeled
omnidirectional robots designed for use in the RoboCup
Small Size League [20]. For state estimation, we used
SSL-Vision [21] with ceiling-mounted cameras to track the
robots using colored markers, and performed state estimation
with an extended Kalman filter. We limited the robots to a
maximum of 2 m/s2 acceleration.

We generated problems for real robots by starting the robot
at the origin with randomly sampled initial velocities and
final locations within a 2m × 2m window of the starting
location. We sampled 20 problems each with zero, and non-
zero final velocities, and repeated each problem 5 times
each, for a total of 100 trials for each condition on the
real robot. We compared TSOCS and NTOC for the set
of problems with zero final velocity, and evaluated TSOCS
on the separate set of problems with nonzero final velocity,

Solution Method Failure Rate
No Tmax, No Initial Guess, No Stage 1 30.49%
Tmax, No Initial Guess, No Stage 1 23.53%
No Tmax, No Initial Guess, Stage 1 9.76%
Tmax, Initial guess, No Stage 1 9.25%
Tmax, Initial Guess, Stage 1 0.39%

TABLE I: Impact of different steps on TSOCS failure rate.

which NTOC cannot solve. We refer to TSOCS problems
with zero final velocity as TSOCS-r.

A. Ablation Tests

To compare how different features of TSOCS affect its
success rate, we ran one million trials of the TSOCS solver
on problems with nonzero final velocity. We performed one
iteration of TSOCS per problem, rather than a full control
sequence, to test the full two-stage solver. Table I shows the
results without various features: Tmax refers to the upper
bound on travel time that stage 1 uses as an initial guess
and holds constant. Without Tmax, we use T = 1 for stage
1. Without the initial guess described in Section IV, we
guess ~α = (1, 2, 3, 4). Stage 1, along with the initial guess
for ~α and T , both improve TSOCS’ success rate. TSOCS
with the time upper bound, initial guess, and first stage (the
configuration used on all subsequent experiments) can solve
over 99% of problems.

B. Accuracy in Travel Time

Control Real
Robots

Simulation
No Noise 5% Noise

TSOCS .13 [.09, .19] 0.00 [-0.01, 0.00] 0.09 [-0.09, 0.90]
TSOCS-r .34 [.13, .57] -0.01 [-0.01, 0.00] 0.07 [-0.12, 0.99]
NTOC .33 [.15, .53] 0.00 [0.00, 0.05] 0.43 [0.00, 2.01]

TABLE II: Median Trel with 95% confidence intervals.

To compare travel time accuracy between TSOCS and
NTOC, we compared Trel =

Tf−To

To
, where Tf is the actual

time taken by the robot to reach its goal and To is the optimal
time for the problem. Table II shows the median and 95%
confidence interval for Trel for real and simulated robots.

In simulation without noise, iterative TSOCS and NTOC
produce travel times that are close to optimal, as expected.
With 5% simulated noise, both control algorithms take longer
than the optimal time to execute, but TSOCS gets signifi-
cantly closer to the optimal time than NTOC. For problems
with non-zero final velocity and with 5% noise, TSOCS had
a median execution error of 9% of the optimal time.

On real robots, the effect of noisy actuation is much
greater than that of 5% noise in simulation. TSOCS-r and
NTOC both took around a third longer than optimal, partially
because the robot could take extra time to reapproach the
goal location if it overshot it. On TSOCS problems with
nonzero final velocity, the robot could not reapproach the
goal without incurring a large time penalty, which time
regularization (Eq. 17) prevents, so the relative time of
problems with nonzero final velocity was lower.

0.000 0.002 0.004 0.006 0.008 0.010
Final Location Error (m)

0.0

0.2

0.4

0.6

0.8

1.0
P
ro

p
o
rt
io
n
B
e
lo
w

TSOCS-r

NTOC

(a) Location errors.

0.00 0.02 0.04 0.06 0.08
Final Velocity Error (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt
io
n
B
e
lo
w

TSOCS-r

NTOC

(b) Velocity errors.

Fig. 4: Distributions of TSOCS-r and NTOC errors in final
location and velocity on real robots.

0.00 0.01 0.02 0.03 0.04
Final Location Error (m)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt
io
n
B
e
lo
w

βmin = 0.1

βmin = 0.01

βmin = 0.001

βmin = 0.0001

(a) Location errors.

0.0 0.1 0.2 0.3 0.4
Final Velocity Error (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt
io
n
B
e
lo
w

βmin = 0.1

βmin = 0.01

βmin = 0.001

βmin = 0.0001

(b) Velocity errors.

Fig. 5: The tradeoff in location accuracy and velocity accu-
racy in problems with nonzero velocity on real robots.

C. Accuracy in Execution

We ran TSOCS and NTOC on the same problem condi-
tions with zero final velocity, and separate TSOCS problems
with nonzero final velocity that NTOC could not solve.
We show examples of paths taken by TSOCS and NTOC
alongside optimal paths in Fig. 3. For problems with zero
final velocity, TSOCS-r and NTOC had similar final location
and velocity errors. All final location errors were less than
7mm, and all final velocity errors were less than 100mm s−1.

D. Tradeoff Between Location and Velocity Error

In TSOCS problems with nonzero final velocity, there is
a tradeoff between location accuracy and velocity accuracy.
Unlike in problems with zero final velocity, if a robot over-
shoots its goal, it cannot immediately re-approach the final
location without significant backtracking. Thus when a robot
is perturbed slightly from its path and can no longer exactly
acheive its goal location and velocity without backtracking,
it must compromise by accepting either some location error
or some velocity error. The βmin parameter of the iterative
cost function in Eq. 17 controls that tradeoff.

Fig. 5 shows that increasing βmin, which increases the
weight given to the velocity error in the modified cost func-
tion in Eq. 17, increases location error and decreases velocity
error, as expected. For βmin = 0.01, the final velocity errors
were less than 0.16m s−1, and the final location errors less
than 0.03m s−1 for all trials. We used βmin = 0.01 in all
other experiments with TSOCS on real robots.

VI. CONCLUSION

We introduced a two-stage optimal control solver
(TSOCS) to solve the time-optimal control problem for
omnidirectional robots with bounded acceleration and un-
bounded velocity. TSOCS can exactly solve problems with

both initial and final velocity, which were previously un-
solvable. We demonstrated a closed loop real-time controller
using TSOCS to control robots with noisy actuation in
simulation, and on real robots.

REFERENCES

[1] J. Biswas and M. Veloso, “The 1,000-km challenge: Insights and
quantitative and qualitative results,” IEEE Intelligent Systems , vol. 31,
no. 3, pp. 86–96, 2016.

[2] J. P. Mendoza, J. Biswas, P. Cooksey, R. Wang, S. Klee, D. Zhu,
and M. Veloso, “Selectively reactive coordination for a team of robot
soccer champions,” in AAAI Conference on Artificial Intelligence ,
2016, pp. 3354–3360.

[3] C. Röhrig, D. Heß, C. Kirsch, and F. Künemund, “Localization of
an omnidirectional transport robot using IEEE 802.15. 4a ranging
and laser range finder,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2010, pp. 3798–3803.

[4] F. G. Pin and S. M. Killough, “A new family of omnidirectional and
holonomic wheeled platforms for mobile robots,” IEEE transactions
on robotics and automation, vol. 10, no. 4, pp. 480–489, 1994.

[5] T. Kalmár-Nagy, R. DAndrea, and P. Ganguly, “Near-optimal dynamic
trajectory generation and control of an omnidirectional vehicle,”
Robotics and Autonomous Systems, vol. 46, no. 1, pp. 47–64, 2004.

[6] W. Wang and D. J. Balkcom, “Analytical time-optimal trajectories
for an omni-directional vehicle,” in IEEE International Conference on
Robotics and Automation, 2012, pp. 4519–4524.

[7] S. Pifko, A. Zorn, and M. West, “Geometric interpretation of adjoint
equations in optimal low thrust trajectories,” Guidance, Navigation,
and Control and Co-located Conferences, Aug 2008.

[8] L. S. Pontryagin, Mathematical theory of optimal processes. CRC
Press, 1987.

[9] M. Renaud and J.-Y. Fourquet, “Minimum time motion of a mobile
robot with two independent, acceleration-driven wheels,” in IEEE
International Conference on Robotics and Automation, 1997, pp.
2608–2613.

[10] M. Chyba and S. Sekhavat, “Time optimal paths for a mobile robot
with one trailer,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 3, 1999, pp. 1669–1674.

[11] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and
M. Diehl, “Time-optimal path tracking for robots: A convex opti-
mization approach,” IEEE Transactions on Automatic Control, vol. 54,
no. 10, pp. 2318–2327, 2009.

[12] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Berkeley
Symposium on Mathematical Statistics and Probability. Berkeley,
Calif.: University of California Press, 1951, pp. 481–492.

[13] A. M. Mohammed and S. Li, “Dynamic neural networks for kinematic
redundancy resolution of parallel stewart platforms,” IEEE transac-
tions on cybernetics, vol. 46, no. 7, pp. 1538–1550, 2016.

[14] F. Altché, X. Qian, and A. de La Fortelle, “Time-optimal coordination
of mobile robots along specified paths,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2016, pp. 5020–5026.

[15] M. Davoodi, F. Panahi, A. Mohades, and S. N. Hashemi, “Multi-
objective path planning in discrete space,” Applied Soft Computing,
vol. 13, no. 1, pp. 709–720, 2013.

[16] X. Li and A. Zell, “Motion control of an omnidirectional mobile
robot,” in Informatics in Control, Automation and Robotics. Springer,
2009, pp. 181–193.

[17] O. Peñaloza-Mejı́a, L. A. Márquez-Martı́nez, J. Alvarez, M. G.
Villarreal-Cervantes, and R. Garcı́a-Hernández, “Motion control de-
sign for an omnidirectional mobile robot subject to velocity con-
straints,” Mathematical Problems in Engineering, vol. 2015, 2015.

[18] D. J. Balkcom, P. A. Kavathekar, and M. T. Mason, “Time-optimal
trajectories for an omni-directional vehicle,” The International Journal
of Robotics Research, vol. 25, no. 10, pp. 985–999, 2006.

[19] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.
org.

[20] A. Weitzenfeld, J. Biswas, M. Akar, and K. Sukvichai, “Robocup
small-size league: Past, present and future,” in Robot Soccer World
Cup. Springer, 2014, pp. 611–623.

[21] Zickler, Laue, G. Jr, Birbach, Biswas, and Veloso, “Five years of ssl-
vision–impact and development,” in RoboCup 2013: Robot World Cup
XVII. Springer Berlin Heidelberg, 2014, pp. 656–663.

