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Abstract

Building “always-on” robots to be deployed over
extended periods of time in real human environ-
ments is challenging for several reasons. Some fun-
damental questions that arise in the process include:
1) How can the robot reconcile unexpected differ-
ences between its observations and its map of the
world? 2) How can we scalably test robots for long-
term autonomy? 3) Can a robot learn to predict
its own failures, and their corresponding causes?
4) When the robot fails and is unable to recover
autonomously, can it utilize partially specified hu-
man corrections to overcome its failures? This pa-
per summarizes our research towards addressing all
of these questions. We present 1) Episodic non-
Markov Localization to maintain the belief of the
robot’s location while explicitly reasoning about
unmapped observations; 2) a 1,000km Challenge
to test for long-term autonomy; 3) feature-based
and learning-based approaches to predicting fail-
ures; and 4) human-in-the-loop SLAM to overcome
robot mapping errors, and SMT-based robot transi-
tion repair to overcome state machine failures.

1 Introduction

We seek the ultimate goal of having autonomous service mo-
bile robots working in human environments, performing tasks
accurately and robustly on demand. Such robots should be ca-
pable of working for not minutes, hours, or days, but for years
at a stretch. Developing, testing, and overcoming failures
for algorithms that can execute robustly and accurately over
such protracted time scales involves unique challenges. First,
perception algorithms must be robust to changes in the envi-
ronment. Second, over such long deployments, robots will
inevitably make errors. They will have to anticipate errors,
and overcome their failures without requiring the assistance
of robotics experts. Finally, testing for robustness over such
a long duration is a challenge in of itself: we need new ap-
proaches to process logs to gain insights into why algorithms
failed, to support the development of techniques to overcome
such limitations. In this paper, we summarize our research
towards addressing all of these challenges.

In Section 2, we present Episodic non-Markov Localiza-
tion (EnML), a localization algorithm for changing envi-
ronments that reasons about the nature of its observations:
whether they correspond to permanent objects, movable ob-
jects termed, or moving objects. EnML reasons about un-
mapped objects in real time, at the time of deployments, with-
out relying on up-to-date static maps of the environment.

To demonstrate the robustness and accuracy of localization
using these contributions, a few years ago, we proposed the
1,000km Challenge: Demonstrate, on a team of deployed
autonomous mobile robots, in multiple real-world human en-
vironments, the robustness and accuracy of localization over
long-term deployments covering a total distance of more than
1,000km. In Section 3 we summarize our results from the
1,000km Challenge, including accuracy, and robustness in
different environments over the 1, 000km Challenge.

Over long-term deployments, autonomous robots will in-
evitably make mistakes. In Section 4, we present our work
on predicting such errors. From data collected over the
1,000km Challenge, we demonstrate that the dynamics of
the environment correlates with the robustness of localiza-
tion. We further present our work on introspective vision to
use supervisory sensing to learn models of failure of stereo
vision used for obstacle avoidance. The learned models are
capable of not only accurately predicting failures, but also in-
ferring the number of distinct classes of failures.

Next, in Section 5 we present our research on overcom-
ing failures of robots by incorporating approximate, partially
specified corrections from non-technical users. Specifically,
we present our work on human-in-the-loop SLAM [Nashed
and Biswas, b] to overcome mapping failures, and SMT-
based robot transition repair [Holtz et al., ] to overcome ac-
tion failures arising from incorrect transitions in robot state
machines.

We conclude with a discussion of open challenges and
promising directions for future work in Section 6.

2 Episodic non-Markov Localization

In support of the goal of long-term autonomy, there have been
a number of approaches proposed to address the inevitable
changes in human environments that robots must adapt to.
Some such approaches include reasoning about the different
discrete states of the environment [Meyer-Delius et al., 2012;
Stachniss and Burgard, ], expanding occupancy grid maps



Figure 1: An example instance of a Varying Graphical Network
(VGN) for non-Markov localization. The non-varying nodes and
edges are denoted with solid lines, and the varying nodes and edges
with dashed lines. The exact structure of the graph will depend on
the STFs and DFs present.

with temporal Markov chains [Saarinen et al., ], and time-
based map-switching [Biber and Duckett, 2005; Krajnik et
al., 2017]. In our work, we realize that maintaining mul-
tiple discrete states of the world, or dynamic models of all
the parts of the environment may be infeasible for robots
deployed over long periods of time, in large environments.
Hence, we introduced Episodic non-Markov Localization
(EnML) [Biswas et al., ; Biswas and Veloso, al, an algorithm
that 1) explicitly reasons in real-time about its observations
that do not match the long-term map, and 2) jointly accounts
for the relative pose corrections from such unmapped objects
concurrently with global pose corrections from mapped ob-
jects, in 3) a single sound probabilistic framework that en-
ables efficient inference of the maximum likelihood estimate
of the robot’s trajectory.

At each time step, EnML classifies observations as aris-
ing from Long-Term Features (LTFs), Short-Term Features
(STFs), or Dynamic Features (DFs). To represent the vary-
ing nature of localization in the presence of unmapped ob-
servations, we introduce a new graphical model, the Varying
Graphical Network [Biswas and Veloso, bl. As in the Dy-
namic Bayesian Network for Markov Localization, a Vary-
ing Graphical Network (VGN) includes certain periodically
repeating nodes and edges that do not change with the be-
lief. A VGN includes two additional structural elements:
varying nodes and varying edges to track the presence and
correlations between STFs and DFs. Figure 1 shows an ex-
ample instance of a VGN. By reasoning about observations
from STFs and DFs over extended deployments, we have also
shown how we can build model-instance object maps [Biswas
and Veloso, 2014] and long-term vector maps [Nashed and
Biswas, al.

Given the initial pose of the robot xy, observations si.,,
odometry ui.,, and a static map M, EnML factorizes the
belief over the robot’s trajectory x;.,, according to the cor-

relations in the VGN. We do not track DFs for localization,
hence they assume a constant value based on priors. Exploit-
ing the fact that different classes of observations (m STFs and
n LTFs) are independent of each other, the belief for EnML
is given by

Bel(x1.p,)

=m
x H P(s?ff
i=1

j=n
xl:n) H [P(S;JTF‘:UWM)P(aj]'xjflyu])] :
j=1

Since the VGN for non-Markov localization has no pre-
defined structure, it might seem that computation of the be-
lief would require storing the complete history of all states
and observations of the robot. However, in practice this is
not necessary. Suppose there exists a time step ¢; such that
all observations and state estimates made after ¢;, given x;,
are independent of all prior observations and state estimates.
This conditional independence implies that there are no STF
observations after ¢; that correspond to STF observations be-
fore t;. In such a case, the history of states and observations
prior to t;, called the “episode” t(.;—1, can be discarded when
estimating Bel(x;.,,) over the episode ¢;.,,. We thus define an
episode ;.1 to be a consecutive sequence of time-steps from
t; to t; such that the observations made between ¢; and
are independent of all observations made before ¢;, given the
pose x;, and the permanent map M.

In order to explicitly account for the effect of the past
robot pose estimates x.,, on future observations and pose es-
timates, we solve for the Belief over the complete history of
robot poses, Bel(xq.,). Due to the prohibitively large state
space, we concentrate on evaluating the Belief in the neigh-
borhood of its maximum likelihood estimate, computed via
non-linear least squares optimization of its log-likelihood.

3 Evaluating Long-Term Autonomy in the
Real World

One of the challenges of working on long-term autonomy is
that real-world evaluation is hard — there is no good surro-
gate for the rich diversity of scenarios that the real world
offers, in order to stress-test algorithms for long-term au-
tonomy. We therefore decided to evaluate our robot lo-
calization algorithms over the 1,000km Challenge, which
spanned several years of deployments in real human en-
vironments. The localization algorithms tested included
depth-based localization using plane filtering [Biswas and
Veloso, al, LIDAR-based localization using Corrective Gra-
dient Refinement [Biswas et al., ] for particle filters, and
Episodic non-Markov Localization [Biswas and Veloso, b;
Biswas and Veloso, 2017]. The 1, 000km Challenge was con-
ducted on a group of autonomous service mobile robots, the
CoBots, from May 17, 2011 to November 18, 2014. Over
the course of their deployments, four CoBots autonomously
performed various tasks [Veloso et al., ] for users, including
escorting visitors, transporting objects, and engaging in semi-
autonomous telepresence.

The robots were deployed in several buildings, including
the Gates Hillman Center (GHC) and Newell-Simon Hall



Map Samples Mean Median | Std. Dev.
error (m) | error (m) (m)
GHC4 7656 0.352 0.343 0.218
GHCS 5123 0.394 0.400 0.181
GHC6 1235 0.296 0.314 0.122
GHC7 | 17489 0.368 0.341 0.190
GHCS 50 0.234 0.167 0.185
GHC9 276 0.464 0.402 0.232

Table 1: Localization accuracy by sparse ground truth for the differ-
ent maps over the course of the 1, 000km Challenge.

(NSH) at Carnegie Mellon University, and the Center for Ur-
ban Science and Progress, 1 Metrotech Center at New York
University (NYU). There were 12 floors in total across all the
buildings that the CoBots were deployed on.

The 1,000km Challenge resulted in the collection of over
168GB of compressed data logs, which are available online'.
We quantitatively evaluated the accuracy and robustness in
localization over the 1, 000km Challenge by 1) comparison to
scan matching, 2) comparison to sparse ground truth, and 3)
tracking operator interventions. The complete results include
analysis of the accuracy and robustness as a function of the
envrionment [Biswas and Veloso, 2016], and here we present
a short excerpt of accuracy by comparison to ground truth.

CoBot2 and CoBot3 were equipped with Hagisonic
StarGazer sensors, which detect StarGazer marker patterns
mounted on the ceiling. We had 46 StarGazer markers placed
on the ceiling throughout the Gates-Hillman Center to pro-
vide sparse ground-truth location estimates. When a CoBot
detected a StarGazer marker, the localization estimates were
compared to the global location of the observed StarGazer
marker to compute the error in localization.

In addition to localization accuracy, we also logged when
operator intervention was required to reset robot localization.
By calculating the mean distance traversed between such in-
terventions, we were ably to quantify the robustness of local-
ization as a function of location and algorithm used. In the
next section, we summarize our findings of the primary pre-
dictors of robustness over the 1, 000km Challenge.

4 Predicting Failures

Robots will inevitably make errors when deployed over ex-
tended periods of time. Can we learn to predict the conditions
under which the robot is likely to encounter errors? We have
investigated this question across two settings: predicting lo-
calization failures from the 1, 000km Challenge, and learning
to predict failures of vision-based obstacle avoidance.

4.1 Analyzing Localization Failures

Over the duration of the 1, 000km Challenge, Corrective Gra-
dient Refinement (CGR) [Biswas et al., ] was used for local-
ization from September 2011 to January 2014, while Episodic
non-Markov Localization (EnML) was used from February
2014 onwards. Table 2 compares the Mean Distance Between
Interventions (MDBI) for each map in the Gates-Hillman

! http://www.cs.cmu.edu/~coral/cobot/data.html

MDBI
Map CGR T EnML LTF% | STF% | DF %
GHC4 | 0.62 442 12.0 67.7 15.6
GHCS | 1.23 9.49 64.2 23.8 11.9
GHC6 | 8.61 9.48 69.6 22.8 6.7
GHC7 | 5.58 9.02 73.1 19.5 7.7
GHC8 | 6.04 19.36 70.5 22.0 7.0
GHC9 | 5.33 | 20.05 67.2 24.0 7.6

Table 2: Mean Distance Between Interventions (MDBI), in km, us-
ing CGR and EnML per map over the 1,000km Challenge, along
with characteristics of each map: LTF %, the percentage of observa-
tions that were LTFs; STF %, the percentage of STFs; and DF%,
the percentage of DF's.

Center building when using CGR, and when using EnML
for localization. The MDBI for EnML is 8.13km, which is
significantly higher than the MDBI for CGR, 4.79km, thus
demonstrating the higher reliability of EnML for localization
in real-world human environments.

The variations in the MDBI across the different floors are
due to the differences in the number of movable objects and
variations over time between the different floors. Table 2
highlights the different characteristics of each floor by enu-
merating the median fraction of observations that were LTF's,
STFs, and DFs. Floors GHC6, GHC7, GHC8, and GHC9
were observed to have the fewest number of unmapped ob-
servations (STFs and DF's), and correspondingly had longer
MDBI for both CGR and EnML. Floors GHC4 and GHC5
had significant human traffic and movable objects — note that
only 12% of the observations on GHC4 matched the map.
These floors are where EnML had a higher MDBI compared
to CGR, thus demonstrating the robustness of EnML while
localizing in challenging dynamic environments.

4.2 Introspective Vision for Obstacle Avoidance

Vision, as an inexpensive yet information rich sensor, is com-
monly used for perception on autonomous mobile robots. Un-
fortunately, accurate vision-based perception requires a num-
ber of assumptions about the environment to hold — some ex-
amples of such assumptions, depending on the perception al-
gorithm at hand, include purely Lambertian surfaces, texture-
rich scenes, and absence of aliasing features or refractive sur-
faces. Such assumptions are hard to frame mathematically,
hard to detect, and may even be unknown a-priori. We intro-
duce an approach for introspective vision for obstacle avoid-
ance (IVOA) to automatically predict when a vision system
used for obstacle avoidance is likely to produce erroneous re-
sults, stemming from such invalid assumptions. By leverag-
ing a supervisory sensor that is occasionally available, IVOA
detects failures of stereo vision by divergence in plans be-
tween those generated by vision and by the supervisory sen-
sor. By projecting the 3D coordinates where the plans agree
and disagree onto the images used for vision-based percep-
tion, IVOA generates a training set of reliable and unreli-
able image patches for perception. We then use this training
dataset to learn a model of which image patches are likely
to cause failures of the vision-based perception algorithm.
Using this model, IVOA is then able to predict whether the
relevant image patches in the observed images are likely to
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Figure 2: Prediction of failures by IVOA for two different perception
models, JPP-C, and ELAS. On the left column, the obstacle grids
produced by each of the two perception models are visualized on the
input image. The green and red dots represent the detected obstacle-
free and occupied cells respectively. On the right, the output of
IVOA is shown as the total probability of failure Pr(F P)+Pr(FN)
for each perception model. IVOA correctly predicts the reflections

to cause false positives for both models, and the textureless wall to
cause false negatives for JPP-C.

0.0

cause failures due to vision (both false positives and false
negatives).

Different vision algorithms that make different assump-
tions about the world, are likely to have differing failure con-
ditions. We demonstrate the ability of IVOA to predict fail-
ures specific to different algorithms. For evaluating this abil-
ity of IVOA, we used two vision algorithms: a simplified vari-
ant of Joint Perception and Planning [Ghosh and Biswas, ]
that assumes there are no textureless surfaces (JPP-C), and
ELAS [Geiger et al., 2010], a dense stereo matching algo-
rithm. IVOA is trained separately using the supervisory input
along with each of these vision algorithms, and the two sep-
arate models are then used to predict failures of their respec-
tive vision algorithms. Figure 2 shows the failures predicted
by IVOA for each vision algorithm.

5 Overcoming Failures

An inevitable challenge for long-term autonomy is that no
matter how sophisticated, no perception algorithm is perfect,
and robots will inevitably make mistakes. From our own
1,000km Challenge, we showed how EnML [Biswas and
Veloso, 2017] significantly improves over Markov Localiza-
tion on the mean distance traversed between interventions,
but there were still a number of inevitable interventions (Sec-
tion 4.1). To compound the problem of inevitable failures,
state of the art robots deployed in the real world need expert
roboticists to come to their aid to overcome errors. There are
two reasons for this: first, algorithms make strong assump-
tions about their models, and second, they depend on precise
parameter values for robust execution. Fixing such domain-
specific parameter values, or inducing the algorithms to over-
come their assumptions, are well beyond what non-roboticists
are capable of. However, while non-technical users may not

know about the internal workings of algorithms, when robots
make mistakes in terms of perceptual estimates or actions,
it is often easy to understand what the correction should be,
in terms of the correct perceptual estimate, or the correct ac-
tion to take. With this key insight, we introduced human in
the loop SLAM [Nashed and Biswas, b] for correcting er-
rors in mapping,and interactive robot transition repair with
SMT [Holtz et al., ] for correcting action errors.

5.1 Human in the Loop SLAM

Building large-scale, globally consistent maps is a challeng-
ing problem, made more difficult in environments with lim-
ited access or sparse features, or when using data collected
by novice users. For such scenarios, where state-of-the-
art mapping algorithms produce globally inconsistent maps,
we introduced Human-in-the-Loop Simultaneous Localiza-
tion and Mapping (HITL-SLAM) [Nashed and Biswas, b],
which incorporates approximate, non-expert corrections into
pose graph SLAM, while explicitly reasoning about the po-
tential inaccuracies in the corrections. HITL-SLAM graph-
ically presents the map estimate to the user, and allows the
user to paint over sets of observations to specify relative geo-
metric constraints between them — collinear, parallel, coinci-
dent, or perpendicular. There are three challenges to incorpo-
rating such corrections: 1) the user input will be ambiguous,
and HITL-SLAM needs to interpret it; 2) the corrections may
be partial, with the user only selecting part of a larger single
entity such as a wall; and 3) the corrections need to be applied
jointly with the existing correlations between observations in
the SLAM problem. HITL-SLAM overcomes the first two
problems by running an EM optimization to interpret the user
input, and the third problem by using a novel set of human
correction factors in a factor graph SLAM fomrulation to
jointly solve for the map estimate with user corrections.

5.2 SMT-Based Robot Transition Repair

When a robot makes errors while performing actions instead
of during perception, we use a different approach to inter-
active corrections. Complex robot actions are typically struc-
tured as state machines, where each state encapsulates a feed-
back controller. Even if each state is correct, the transitions
between states depend on parameters that are hard to get right,
even for experienced roboticists. It is very common for pa-
rameter values to work in simulation but fail in the real world,
to work in one physical environment but fail in another, or to
work on one robot but fail with another.

We introduced SMT-based Robot Transition Repair
(SRTR) [Holtz et al., 1, an approach to adjusting the param-
eters of robot state machines using sparse, partial specifi-
cations of corrections from humans. During execution, we
log execution traces of the transition function. After execu-
tion, the human examines the execution trace and corrects a
handful of transitions as needed. SRTR then takes as input
the transition function source code, the trace, and the correc-
tions, and produces adjustments to the parameter values in
three major steps. 1) It parses the transition function code
and converts it to an abstract syntax tree for repair. 2) It
uses a lightweight program analysis to identify parameters



that cannot be repaired, and for each user-provided correc-
tion, it partially evaluates the transition function for the in-
puts and variable values at the time of correction, yielding
residual transition functions. 3) Finally, it uses the residual
transition functions to formulate an optimization problem for
an off-the-shelf MaxSMT solver [Bjgrner ef al., 2015]. The
solution to this problem is an adjustment to the parameter val-
ues that satisfies as many human corrections as possible while
simultaneously minimizing adjustments to the parameters.

The full paper for SRTR [Holtz et al., ] includes extensive
empirical results demonstrating that SRTR 1) finds param-
eter adjustments fast; 2) produces adjustments that perform
as well as those found by exhaustive search; 3) finds adjust-
ments that generalize to new scenarios; and 4) outperforms a
domain-expert at repairing state machines.

6 Discussion and Conclusion

In this paper, we presented our research towards the ultimate
goal of “always on” autonomous mobile robots in everyday
human environments. While significant progress has been
made towards this goal, it still remains elusive. There are
many topics of active research in support of this goal. On the
topic of long-term mapping and localization, there is grow-
ing interest in using semantic-level understanding of envi-
ronments to reason about changes in the world. Simultane-
ously, competency-aware machine learning and adversarial
machine learning are promising areas of research with the aim
of accounting for, predicting, and overcoming inevitable er-
rors made by autonomous systems, including robots. Finally,
there is considerable interest in programming and correcting
robots through non-technical means of input, including inter-
actions with novice users. We are excited to contribute to, and
support the exciting new developments along these directions
and others in support of long-term autonomy.
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