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Abstract— Autonomous mobile robots that use multiple depth
sensors to perceive their environments, rely on extrinsic cal-
ibration to combine the individual views from each sensor
into a single coherent view of the surroundings. Such extrinsic
calibration is tedious to perform manually, and requires that
specific scenes to calibrate. Current state of the art automatic
approaches do not consider the content of scenes used for
calibration, and thus are not robust to partially informative
scenes in long-term deployments. In this paper, we present
Delta-Calibration, an automated extrinsic calibration technique
that takes into account the information in a scene for cali-
bration. Delta-Calibration relies on constrained sensor motion
to minimize the effects of desynchronization, and ego-motion
estimation from each depth camera to detect significant changes
in pose, which we term Delta-Transforms. We derive a solution
to the extrinsic calibration using such Delta-Transforms taking
into account uncertain axes of motion in the environment, and
further infer necessary and sufficient conditions on the Delta-
Transforms such that Delta-Calibration results in a unique,
non-singular, and numerically stable extrinsic calibration. We
present quantitative and qualitative results demonstrating the
effectiveness of Delta-Calibration at computing extrinsic cali-
bration over different arrangements of depth sensors.

I. INTRODUCTION

Inexpensive depth cameras such as the Microsoft Kinect
sensor have proven to be invaluable for mobile robot auton-
omy, and have been used for various tasks such as mapping,
autonomous indoor mobile robot localization, human detec-
tion, and object identification. However, due to the limited
field of view of such depth sensors, mobile robots need to be
equipped with multiple depth sensors. In order to assemble
a single coherent view of the environment from a system
of multiple depth sensors, the robot must rely on the pose
transforms for each sensor to transform their observations
into a single consistent reference frame. The problem of
estimating the set of pose transforms for the sensors is called
extrinsic calibration.

There have been many proposed approaches to extrinsic
calibration of sensors, but existing state of the art approaches
perform poorly when calibrating in scenes with few features,
which we call partially informative scenes. In order for cali-
bration to be possible in diverse environments and long-term
deployment scenarios it needs to be robust to environments
with varying amounts of visual information. In this paper,
we present an approach to automatic unsupervised extrinsic
calibration of depth sensors that places no restrictions on
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the arrangement of sensors, requires no engineered informa-
tion, and can calibrate from multiple partially informative
scenes. We call our approach Delta-Calibration since it
relies on the perceived ego-motion, or Delta-Transforms of
each depth sensor when rigidly connected to each other.
Delta-Calibration computes the extrinsic calibration as the
solution to a system of linear equations in the special
Euclidean group in 3D, SE(3). We derive the solution of
the extrinsic calibration in analytic closed-form in terms
of the observed Delta-Transforms in Section III we use
the derivation of the solution to demonstrate requirementes
of the ego-motion based solution to extrinsic calibration,
and based on these requirements develop a solution for
calibrating ground-based robots. Given the analytic solution
we develop a solution to the extrinsic calibration with
uncertain ego-motions measured from partially informative
scenes in Section IV. Finally, we present quantitative results
of Delta-Calibration, and comparison to other methods using
several configurations of example depth sensor arrays, and
depth sensor to odometry calibration which show that Delta-
Calibration performs better than the state of the art in
partially informative scenes and with restricted axes of robot
motion in Section V.

II. RELATED WORK

Related work for Delta-Calibration includes calibration
methods for both intrinsics and extrinsics of depth and
color sensors. The most common calibration technique is
the supervised checkerboard method [21], which uses a
checkerboard as an engineered target for intrinsic calibration
of standard cameras, but other supervised methods have been
employed that use single bright spots [17], cuboids [7], or
spheres [15]. Supervised methods compute the calibration
between the two images using co-planar checkerboard points
identified in the color image [20], by using RANSAC for
estimation [12], by implementing unique calibration targets
for the Kinect and the color camera individually [10], or by
calibrating the two simultaneously to correct for distortion
[4]. Supervised methods require engineered targets, and as
such are infeasible for calibration of robots operating in long
phases of autonomy.

Unsupervised methods remove the need for engineered
targets, and thus require less human interaction. Some unsu-
pervised approaches use properties of the environment, such
as grid maps [6]. Others rely on the motion of the objects
in the environment by tracking planar correspondence points
[16], by utilizing the geometry of large planes which can be
seen without overlap by multiple sensors [2], by tracking
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correspondence points on arbitrary moving objects [13],
or via nonparameteric learning using a mutual information
model [9]. These methods rely on knowledge about the
environment or specific qualities of scenes.

Methods more similar to our approach use motion of the
sensors for calibration. This includes using sensor motion to
calibrate 2D and 3D LIDARs by optimizing the point cloud
with respect to a measure of entropy [11]. Most similar to our
method are approaches which use sensors in motion. Some
of these perform intrinsic calibration for depth sensors [18],
[19], or with stereo vision [5] using rigid body motions for
calibration. Others compute extrinsics using shared features
between the sensors, either with bundle adjustment [3], or by
utilizing the output of SLAM [1]. Work utilizing sensor ego-
motion in a similar formulation to ours exists that handles
uncertainty in the sensor readings, but not uncertainty in the
scene or restricted axis of motion, by solving an uncertainty
weighted version of the Kabsch algorithm for the extrinsic
transform [18], [19]. Others use the Unscented Kalman Filter
to estimate the pose between odometry enabled sensors, or
constrained dual quaternion optimization to solve the motion
relationship between the sensors [14].

Delta-Calibration is an unsupervised method that calcu-
lates the extrinsic calibration based on observed motion from
each sensor. We place no restriction on the field of view, and
require no calibration targets. Further, Delta-Calibration is
robust to partially informative scenes, and restricted axes of
sensor motion. Removing these requirements makes Delta-
Calibration applicable to real-world autonomous calibration
scenarios in varied environments.

IITI. EXTRINSIC CALIBRATION USING
DELTA-TRANSFORMS

Extrinsic calibration relates two sensors via the 3-
Dimensional rigid-body transform that takes a point from
one camera’s frame of reference to its corresponding location
in the second sensor’s frame of reference. We denote the
coordinate frame for sensor i at time ¢ as C!. For a given
sensor we refer to the affine transform that takes points from
sensor i’s frame of reference at timestep ¢ + At to timestep
t as a DeltaTransform, written as Df . Delta-Calibration
seeks to take corresponding sets of Delta-Transforms from
a rigidly connected pair of sensors, and from them compute
the extrinsic calibration between the two sensors.

Given C! and C!T4! for i = {1, 2}, the Delta-Transforms
Dt and D¢, and the affine transform A, there are two or-
derings of transforms that can take points from the reference
frame C5™' to the reference frame C!:

DiApy" 2" = ADypy" 2 = pi. (1)

In general, the Delta-Transforms themselves are related as
DA = ADY. This is a special case of the equation
form called the Sylvester Equation [8] where the solution
is an element of the Special Euclidean group SE(3). To
solve this equation, we consider the homogeneous matrix
representation of the transforms where each transform is
composed of a rotation matrix and a translation as,

Ry T Ry T R T
D§=[01 f},Déz{(f f},Az{O J @)

Thus, the rotation and translation components are expressed
separately as

RiR=RRy;, RIL+T=RT+T1T. 3)

The rotation component of Eqn. 3 is again a special case of
the Sylvester equation where the solution is an element of
the special orthogonal group SO(3). We now present how
Eqn. 3 is solved to recover the rotation R, and using this
computed result we recover the translation 7.

A. Rotation Calculation

We first note that a unique solution to Eqn. 3 exists if, and
only if rotations R; and Ry are not co-axial. If R; and R
are co-axial, there exist an infinite family of solutions with
a rotation axis parallel to Ry and Ro, and with arbitrary
magnitude of rotation. To calculate the extrinsic rotation R
we first represent Eqn. 3 in the equivalent quaternion form
q19 = qg2, where each rotation R is represented by its
equivalent quaternion form, such that rotation R corresponds
to quaternion ¢ = w+xi+yj + zk, Ry to g1 = w1 +x11+
y1j+2z1k, and Ro to go = wo~+x2i+Yy2j+22k. From the rules
of quaternion multiplication, we then convert into the linear
system M;q, = Moq,, where q, = [w x y z]T is the vector
form of the equivalent quaternion ¢, and matrices M; and
M> are given by the rules of quaternion post-multiplication
by ¢o and pre-multiplication by g; respectively,

w; —Tr1 —Y1 —z2
X1 w1 —z1 1
My = ; 4)
1 21 wyp  —I1
21 W T w1
Wz —T2 —Y2 —R2
T2 W2 22 —Y2
My = : &)
Y2 —22 W2 1)
L %2 Y2 —T2 Wz |

Thus, the quaternion vector g, corresponding to the rotation
R must then lie in the null space of (M; — Ms). By
computing the eigenvalue decomposition of M; — Mo we
find g, to be the unit-norm eigenvector corresponding to
the lowest eigenvalue. The resulting ¢, is then the extrinsic
rotation R in quaternion form. Rotation can be found for
multiple Delta-Transforms in quaternion vector form ¢, for
all M} and MY at time ¢ as

g = argmin » _[(M{ — M3)q,|"[(M{ — M})q,).  (6)

Qv +

The solution for ¢, can then be found by computing the
eigenvalue decomposition of the combined matrix M from
all time-steps, where M is given by,

M = [(M] — My)T[(M{ — My)]. ()

Given the value of R, we can then solve for T as described
next.
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B. Translation Calculation

Having calculated the rotation component R of the extrin-
sic calibration A, to calculate the translation component 7',
we first rearrange the equation for translation as (I —Ry)T =
Ty — RT5. and solve for T.

T = (aa) " a™h, a=(I —Ry), b=T, — RT,. (8)

Eqn. 8 has no solution for a single rotation matrix I;, since
for any proper rotation matrix R, (I — R)v = 0 for all
v parallel to the axes of rotation of R. Thus a’a is not
invertible for a single pair of observed delta transforms, so
at least two rotations with non-parallel axis must be used
in the extrinsic calculation. Therefore, a solution to 7" using
multiple DeltaTransforms is computed from,

1
T = Z atTat Z a?bt . 9)
t t

Here, the values of a;,b; are computed from the Delta-
Transforms from timestep ¢ by Eqn. 8. Using Eqn. 9 we can
calculate the extrinsic translation 7" between the two sensors,
and the combination of R and T gives us the full extrinsic
calibration A. Thus, given at least two Delta-Transforms
per sensor with non-parallel axes of rotation from rigidly
connected sensors which are not coaxial we can compute
the extrinsic calibration between the two sensors.

C. Calculating Delta-Transforms

In order for Delta-Calibration to yield quality calibra-
tion results accurate Delta-Transforms need to be calcu-
lated. These transforms can be calculated in a number
of ways, but the set of Delta-Transforms should observe
certain properties for robust calibration. These qualities are:
1) Delta-Transforms must be time-aligned across sensors,
2) they should be calculated over keyframes in order to yield
transforms distinct from sensor variance, 3) and the set of
transforms should cover all axes of motion for the sensor
system.

D. Calibration with restricted motion

We have presented a solution to calibration given sets of
multiple Delta-Transforms which contain rotations with non-
parallel axes. However, when the robot has restricted degrees
of freedom, we cannot guarantee multiple axes of rotation.
With this restriction Eqn. 7 and Eqn. 9 can yield only
partially correct solutions. This is because Delta-Transforms
with only z-axis rotation contain no information about the
z-axis of either R or T. We propose a solution for the z-axis
of R given a pure translation from the robot, and for the
z-axis of translation given a view of the ground plane and
R, in the scenario where the desired calibration is between
the sensor and the robot base.

Specifically, when R; = I the translation equation sim-
plifies to RT, = T3. This has no solution for a single pair
of translations 75,7}, nor for multiple pairs of translations
which are co-axial. In order to solve for R we can use this in
combination with Eqn. 3 to form a fully constrainted problem

Delta-Transform pairs P, and P; such that P, contains any
combination of rotations and translations and P; contains
only pure translations, then a least squares problem can be
formed which minimizes the residuals r; and 7, described
in Eqgn. 10.

i€ P, i€ P
= (B RE, ro= (T - T

% i

(10)

Given R we can calculate the  and y components of T’
using Eqn. 9, and we can calculate the z component given
a point cloud which contains a view of the ground plane,
and the partial extrinsic transform A. By transforming the
point cloud with A we treat the distance from the sensor to
the ground plane as the z-axis component of 7. With these
additional steps we can calibrate using ego-motion even in
the special case of a robot with limited degrees of freedom.

IV. CALIBRATION FROM PARTIALLY
INFORMATIVE SCENES

We have derived an analytical solution to extrinsic cal-
ibration from sensor ego-motion that holds when the ego-
motions can be accurately determined. However, for depth
sensors it is possible to have partially informative scenes,
such as a view of a single wall, in which no features are
present that can disambiguate change along specific axes. It
is possible to determine the amount of information in a scene
using distribution of normal vectors in a scene in the scene.
Given the set of normal vectors for a scene N = {n;} from
7= 0to 7 = s, we form the scatter matrix .S and calculate
its condition number k(S) as:

Omazx (S)
Omin (S)

Where 0,,4,(5) is the largest singular value of S and
Omin(S) is the smallest singular value of S. Then, if S
is well conditioned such that k(S) is close to 1 the scene
is fully informative, otherwise some axis of motion will be
ambiguous.

Given the normals we can determine the axis of transla-
tional certainty c¢; or translational uncertainty u;, and the axis
of rotational uncerainty u;. Given N we set u,. and ¢; equal to
the first normal ng because a single normal in a scene only
gives information about translation along the normal, and
gives no information about rotation about an axis parallel
to the normal. Then for each additional normal n; in N we
check if n; is parallel to w,, if it is not there is no axis of
rotational uncertainty. Second, if we have no single axis uy,
and c¢; is not parallel to n;, then u, is the axis of translation
orthogonal to ¢; and n;, and if we then have a single wu; then
there is no single axis c¢;. Finally, if we had some single
u; and u; is not orthogonal to n; then we have no axis of
translational uncertainty ;.

S=> mn, k)= (11)

A. Calibration with Ambiguous Delta-Transforms

When some part of the Delta-Transforms cannot be mea-
sured from a partially informative scene, the relationship
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described in Eqn. 1 will not hold. We propose an extension
given known axis of translational uncertainty u;¢, and known
axis of rotational uncertainty u;,, for all sensors ¢ = {1, 2}.

B. Rotation Calculation

To calculate the extrinsic rotation R we start with the
quaternion representation of our rotation calculation, where
q represents the quaternion form of a rotation. In order to
account for the uncertainty we need to find the component
of g1 corresponding to axis uo, qiﬂ, and the component
of ¢y corresponding to axis of uncertainty uy,, ¢42. To do
this we calculate the portion of the angle-axis forms ¢1, g3
of the respective quaternions, corresponding to the axes of
uncertainty using the extrinsic rotation R, and then we treat
the resultant angle axes rotations ¢%2, g% as new quaterions
q%? and ¢¥'. We can calculate these angle-axis rotations as
follows:

a2 = (R7'G1 - upo)uro, (12)

q¥t = (RG5 - up1)ur1-

Where - corresponds to the vector dot product. Given this,
A solution to rotation considering uncertainty can be written
as:

ul-—1

T =" e (13)

194}

R* =argmin¥_ qiqql* " — ¢4 qgh (14
g i

The solution for g can then be calculated using least-
squares optimization, and using the rotation matrix form of
q, R, we can then solve for 7.

C. Translation Calculation

To calculate T we rewrite Eqn. 8 and set it equal to 0.

E,=T—-RT-T —RI, (15)
Eqn. 15 is the total error with a given 7' and some uncer-
tainty. To account for uncertainty we can remove the portion
of the error vector E; along the axis of uncertainty u;; and
Ugt as:
E = (E) — (Ey - uyy)uly — (B - Rujy) Ruj, (16)

In order to fully account for possible sources of uncertainty
in T we must still acount for the uncertainty in Rj, ui,.
This is because rotational uncertainty implies that a portion
of translation which was resultant of rotation could be
unobserved. Given this we can calculate the residual error
given some T as r = (E - u})2.

Which we use to calculate a least-squares solution to the
problem given R, ¢4, and t for all timesteps i as.

T = argmin » 7 17

Where T is the extrinsic translation.
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Fig. 1: Effects of varying experimental parameters of Delta-
Transforms on rotational error of calibration with no ambi-
guity or restricted motion.
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Fig. 2: Effects of varying experimental parameters of Delta-
Transforms on translation error of calibration with no ambi-
guity or restricted motion.

D. Calibration with restricted motion

We need a special case to handle a robot which can only
rotate about the z axis. In order to handle uncertainty we
must adjust the equation for translation to handle wq; and
ug¢. The restructured equation is as follows:

RT2 - R(T2 . Rflult)Rflult) = T1 - (T1 . RUQt)RUQt

Eqn. 19 can be solved using multiple Delta-Transfogrgg
for the estimated transform R*.

r' = RTj — R(T; - R™'uy, )R~ uy,) — Tj — (T} - Ru,) Ruj,

R* = arg min rt (19)

Given this calculation for the z-axis of R given restricted
motion and partial information we can calculate the full
extrinsics using Eqn. 14 and Eqn. 17.

V. EXPERIMENTAL RESULTS

We performed three sets of experiments to evaluate Delta-
Calibration with respect to other calibration techniques:
1) simulation experiments to evaluate the effect of noise
in, the magnitude of, and number of Delta-Transforms used
for Delta-Calibration, and the ego-motion based calibration
technique described in [18] which we will call Multi-Array-
Cal; 2) real-world calibration experiments s; and 3) real-
world calibration experiments with a Kobuki Turtlebot and
partially informative scenes.

A. Simulation Experiments

To evaluate the effect of sensor noise on the accuracy
of Delta-Calibration, we generate synthetic sequences of
Delta-Transforms RY,Tf, R, T3, for a randomly chosen
extrinsic calibration R, T. Here, R., T} are the rotation, and
translation components of the Delta-Transforms for sensor
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i at time-step t,t € [1, N]. We generate synthetic sequence
of Delta-Transforms from randomly generated ground-truth
extrinsic calibration R, T, and evaluate calibration by com-
paring resultant extrinsic transforms R, T to R,T.

We perform three types of simulation experiments over
three different conditions and compare the results of Delta-
Calibration and Multi-Array-Calib. The experiments: 1) use
Delta-Transforms with unambigous and unrestricted motion,
2) with only ambigous motion, and 3) with motion restricted
to only planar X,y plane translations and z-axis rotations.
The entire procedure is repeated 100 times for each condi-
tion. The three conditions we test are 1) the effect of the
magnitude of noise in rotation eg, e, 2) the magnitude of
the Delta-Transforms E'r, Fr, and 3) the number of Delta-
Transforms N used for Delta-Calibration. While varying
each parameter we hold the others at nominal values N =
10,63 = 100,€T = 2cm, ER = IO,ET = lcm.

Fig. 1 and Fig. 2 show the plots of error in extrinsics as
calculated by Delta-Calibration. The first graphs show that
both methods improve with additional number’s of Delta-
Transforms, but the closed form solution of Delta-Calibration
outperforms regardless of the number of Delta-Transforms.
The results of Multi-Array-Cal in these experiments are
comparable to the results presented in [18], [19], but it should
be noted that these papers used the output of Multi-Array-
Cal as initial guesses for further optimizations that require
data from RGB sensors, which we do not have for our
experiments.

In the second set of graphs in Fig. 1 and Fig. 2 we see
that Multi-Array-Cal outperforms Delta-Calibration for very
small Delta-Transforms. This is related to the handling of
sensor variance as part of the calibration in Multi-Array-
Cal as described in [18], [19]. However, Delta-Calibration
performs as well or better in all cases with lower information
to noise ratios, and can also calibrate in scenarios which
Multi-Array-Cal cannot.

The results of our experiments using Delta-Transforms
with ambiguous and restricted axes of motion show similar
results to Fig. 1 and Fig. 2 for Delta-Calibration and are
ommitted for brevity. These cases are not handled by Multi-
Array-Cal, and so the error and variance are both very high.
In both cases Delta-Calibration performs with median errors
of less than one degree of rotational error, while the Multi-
Array-Cal method shows errors of as much as 100 degrees.
This flexibility makes Delta-Calibration less brittle and more
applicable to real robot scenarios.

B. Real-World Experiments

For real-world experiments we compare the results of
different calibration techniques over multiple two sensor
datasets. These datasets are:

1) Right-Angle, a view with a roughly 90° rotation be-

tween the two sensors with no overlap,

2) Wide-Horizontal, a non-overlapping vertical wide-angle
view with only depth images, and no covariance esti-
mate.

3) Overlap, an overlapping horizontal wide-angle view,

4) Opposite, a view with slightly less than 180° rotation
between the two sensors which never view the same
scene, and

5) Three-Sensors, a view with three sensors, two with
overlap, with no shared scenes.

We calibrate these setups using different calibration tech-
niques:

1) DeltaCal ICP: Iterative closest point based calculation
of Delta-Transforms. Requires only depth images.

2) DeltaCal SLAM Raw: Delta-Calibration using Delta-
Transforms calculated using SLAM keyframes and
poses. Requires depth and color images.

3) DeltaCal SLAM Selected: Delta-Calibration using
Delta-Transforms calculated using SLAM poses and
Delta-Calibration keyframes. Requires depth and color
images.

4) SLAM-Optimization: using an implementation of the
SLAM based optimization method described in [1].
Requires depth images, color images, and views of the
same features.

5) Multi-Array-Cal: using an implementation of the ego-
motion based method which takes into account the
variance of the sensor data described in [18], [19].

To evaluate the quality of final calibration we define an error
metric to use given the absence of ground truth.

Consistency Error: Consistency error is a measure of the
inconsistency in utilizing resultant extrinsic calibration to
construct a 3d model. We measure this error using datasets
that contain known planar features. We compute the angular
consistency error (ACE) as the absolute value of the differ-
ence in rotation between the corresponding plane normals
and the known relationship between the planes. We then
compute the translational consistency error (TCE) as the
absolute value of the difference between the point to plane
distance and the known distance. We use three non-parallel
planes per dataset in order to take into account all degrees of
freedom, and we average the ACE and TCE from all planes.
Table I shows the results of this error metric for our datasets,
where an entry of — represents that a method could not be
run on the given dataset.

For our datasets only ego-motion based methods could
calibrate all datasets. From this data it can be seen that
performance between Delta-Calibration using either selected
keyframes from SLAM or DeltaCalculation yields con-
sistency error with centimeters of translational magnitude
and an average of .06 radians of ACE in the worst case.
Delta-Transforms calculated via SLAM selected keyframes
performed particularly poorly. In our tests the SLAM-
Optimzation has variable performance based on the number
of shared features viewed by the sensors, yielding more
accurate results the closer the maps formed by SLAM
are to identical. These results show that Delta-Calibration
yields accurate calibration results for varied sensor setups,
and importantly, that only Delta-Calibration can perform
calibration in all of our test scenarios with reasonable results.
As an example calibration Fig. 3 demonstrates an alignhment
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TABLE I: Error Metric Results for multiple sensor configurations and calibration methods. ACE in radians, and TCE in

meters. Boxed columns represent results from our method.

SETUP DeltaCal ICP  Delta-Cal SLAM Selected | SLAM-Optimization Delta-Cal SLAM Raw  Multi-Array-Cal
TCE ACE TCE ACE TCE ACE TCE ACE TCE ACE

Overlap .034 = .06 .018 .06 353 1.09 .0325 .06 0.3 0.2

Right-Angle 075 = .04 .013 .055 12 1.14 .043 3 0.2 0.047

Opposite .056 .06 .031 .05 1.67 1.16 — — 0.64 0.07

Three-Sensors 077  .054 .051 .06 2215 1.05 — — 0.425 | 0.05

Wide-Horizontal .03 .026 — — — — — — — —

REFERENCES

(a) Chair Front View (b) Chair Top View

Fig. 3: Point clouds from wide-angle sensor configuration
with no overlap, aligned using Delta-Calibration calculated
extrinsics. The green and blue tinting of the point clouds
differentiates data from the two sensors.

of a 3D scene calculated using Delta-Calibration.
C. Turtlebot Experiments

We performed two sets of experiments on the Kobuki
Turtlebot platform. One with fully informative scenes, and
one without. We calculated extrinsics with both Delta-
Calibration and Multi-Array-Cal, we compared a set of
fully informative Delta-Transforms recorded from the setup
and recorded the average rotational and translation error in
Table II. The results show that Delta-Calibration handles both
cases without increase in error, and the partial scene case
yields reasonable calibration results when the Multi-Array-
Cal method cannot.

TABLE II: Error Metric Results for Turtlebot experiments.
AEavg in radians, and TEavg in meters

SETUP DeltaCal ICP Multi-Array-Cal
TEavg AEavg TEavg AEavg

Full-Scenes .01 .04 .02 16

Partial-Scenes .01 .05 .10 A5

VI. CONCLUSION

In this paper we presented Delta-Calibration, a solution
to extrinsic calibration of rigidly connected sensors using
only motion observed from the sensors in the form of Delta-
Transforms. Further our experiments have shown that Delta-
Calibration calculates accurate extrinsic calibrations, even
when presented with partially informative data or restricted
motion which render other methods infeasible. In particular
we have shown that Delta-Calibration is the only method in
the state of the art which can perform extrinsic calibration
of depth sensors, in partially informative environments with
restricted robot motion. This makes Delta-Calibration well
suited to the task of recalibrating robots in the field during
phases of long-term autonomy.
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