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Abstract—Recently, the availability of low cost depth cameras
has provided 3D sensing capabilities for mobile robots in the form
of dense 3D point clouds, usable for applications like 3D mapping
and reconstruction, shape analysis, pose tracking and object
recognition. For all the aforementioned applications, processing
the raw 3D point cloud in real time and at full frame rates
may be infeasible due to the sheer volume of data. Hence, a
natural choice is to extract geometric features from the point
cloud, and process these features instead of the raw point clouds.
The task of geometric feature extraction itself is challenging due
to noisy sensing, geometric outliers and real-time constraints. We
introduce the Fast Sampling Plane Filtering (FSPF) algorithm to
reduce the volume of the 3D point cloud by sampling points from
the depth image, and classifying local grouped sets of points
using Random Sample Consensus (RANSAC) as belonging to
planes in 3D (called the “plane filtered” points) or points that
do not correspond to planes (the “outlier” points). The plane
filtered points are then converted to a set of convex polygons
in 3D which represent the planes detected in the scene. The
detected convex polygons are then merged across successive depth
images to generate a set of scene polygons. The FSPF and polygon
merging algorithms run in real time at full camera frame rates
with low CPU requirements: In a real world indoor environment
scene, FSPF takes on average 1.39 ms to process a single 640 ×
480 depth image, producing 2004 plane filtered 3D points and 70
polygons(average). The polygon merging algorithm takes 1.12 ms
to merge the latest frame with the history of obervations. Thus,
the algorithms are capable of processing depth images at about
400 frames per second on average. We provide experimental
results demonstrating the computational efficiency of the FSPF
algorithm, and include results from different indoor scenes.

I. INTRODUCTION

With the advent of low-cost depth imaging cameras, recent
work has focused on exploiting this sensor modality for the
purpose of mobile robot autonomy. These depth cameras made
dense 3D point clouds available, which was previously only
possible with much more expensive sensors like time-of-
flight cameras or scanning 3D laser rangefinders. Applications
like 3D mapping and reconstruction, shape analysis, pose
tracking and object recognition can potentially benefit from
this sensor modality. However, given that indoor mobile robots
have limited onboard computational power it is infeasible to
process the complete 3D point clouds in real time and at full
frame rates (e.g. the Microsoft Kinect sensor produces 9.2M
3D pts/sec). Feature extraction, and in particular, geometric
feature extraction is therefore the natural choice for abstracting
the sensor data. However, noisy sensing and the presence
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Fig. 1: Results from a test scene: (a) Plane Filtered points
shown as orange points, corresponding convex polygons
shown in blue. The complete 3D point cloud is overlaid as
translucent grey for reference. (b) Scene polygon set generated
by merging polygons from 15 consecutive depth image frames

of geometric outliers (objects amidst the geometric features
that do not match the geometric model of the features)
provide additional challenges to the task of geometric feature
extraction.

We introduce the Fast Sampling Plane Filtering (FSPF)
algorithm that samples the depth image to produce a set
of “plane filtered” points corresponding to planes, the cor-
responding plane parameters (normals and offsets), and the
convex polygons in 3D to fit these plane filtered points. The
FSPF algorithm meets the following goals:

1) Reduce the volume of the 3D point cloud by generating
a smaller set of “plane filtered” 3D points

2) Compute convex polygons to fit the plane filtered points
3) Iteratively merge convex plane polygons without main-

taining a history of all observed plane filtered points
4) Perform all of the above in real time and at full frame

rates

We provide experimental results to show the effectiveness
of plane estimation and the computational efficiency of FSPF.
To illustrate the key processed results, Fig. 1 shows the plane
filtered points and polygons from a single frame, and the scene
polygon set obtained by merging 15 depth image frames from
a sample scene.

This paper is organized as follows: Section II discusses
relevant related work. Section III introduces the Fast Sampling
Plane Filtering algorithm that samples the depth image to



produce a set of points corresponding to planes, and the convex
plane polygons to best fit the points. Section IV introduces the
polygon merging procedure which iteratively merges convex
plane polygons at every time step based on the complete
history of detected plane filtered points, without explicitly
mainting such history. The paper concludes with Experimental
results (Section V) showing the effectiveness and speed of
execution of the algorithms.

II. RELATED WORK

Approaches that operate on raw 3D point clouds for plane
(and general geometric shape) detection (e.g. [5, 9]) are ill-
suited to running in real-time due to their high computational
requirements, and because they ignore the fact that depth
cameras make observations in “2.5D”: the depth values are
observed on a (virtual) 2D image plane originating from a
single point. Region growing [8] exploits the local correlation
in the depth image and attempts to assign planes to every 3D
point. The Fast Sampling Plane Filtering algorithm, which we
introduce in this paper, on the other hand samples points at
random and does not attempt to fit planes to every point, and
instead uses local RANSAC [1].

A number of 3D mapping algorithms ([6, 2, 10]) have been
developed that build maps using 3D points in space, but these
methods do not reason about the geometric primitives that the
3D points approximate.

An alternative approach to mapping using the raw 3D
points is to map using planar features extracted from the 3D
point cloud [12, 4]. Approaches to extraction of geometric
features in point clouds explored in the past include 3D Hough
transform [11] and region growing [8]. In particular, 3D Plane
SLAM [7] is a 6D SLAM algorithm that uses observed 3D
point clouds to construct maps with 3D planes. The plane
detection in their work relies on region growing for plane
extraction, whereas our approach uses local RANSAC filtering
of the depth image.

III. FAST SAMPLING PLANE FILTERING

Depth cameras provide, for every pixel, in addition to the
usual color values, their distance from the camera. This depth
information, along with the camera intrinsics (horizontal field
of view fh, vertical field of view fv , image width w and height
h in pixels) can be used to reconstruct a 3D point cloud. Let
the depth image of size w× h pixels provided by the camera
be I , where I(i, j) is the depth of a pixel at location d = (i, j).
The corresponding 3D point p = (px, py, pz) is reconstructed
using the depth value I(d) as

px = I(d)
(

j

w − 1
− 0.5

)
tan

(
fh

2

)
, (1)

py = I(d)
(
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h− 1
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)
tan

(
fv

2

)
, (2)

pz = I(d). (3)

The naı̈ve approach to reducing the volume of data would
be to sub-sample the 3D point cloud. Although this reduces the
number of 3D points processed by the algorithms, it discards

information about the scene. An alternative is to convert the 3D
point cloud into a more compact, feature-based representation,
like planes in 3D. However, computing optimal planes to fit the
point cloud for every observed 3D point would be extremely
CPU-intensive and sensitive to occlusions by obstacles. The
Fast Sampling Plane Filtering (FSPF) algorithm combines both
ideas: it samples random neighborhoods in the depth image,
and in each neighborhood, it performs a RANSAC based plane
fitting on the 3D points. Each neighborhood of plane filtered
points is then combined to form a convex polygon. Thus,
FSPF reduces the volume of the 3D point cloud and extracts
geometric features in the form of convex polygons in 3D while
being robust to outliers.

FSPF takes the depth image I as its input, and creates a list
P of n 3D points, a list R of corresponding plane normals, a
list C of convex polygons, and a list O of outlier points that
do not correspond to the locally evaluated planes. Algorithm 1
outlines the plane filtering procedure. The configuration pa-
rameters required by FSPF are listed in Table I.

FSPF proceeds by first sampling three locations d0,d1,d2

from the depth image (lines 6-8). The first location d0 is
selected randomly from anywhere in the image, and d1 and
d2 are selected randomly within a neighborhood of size η
around d0. The 3D coordinates for the corresponding points
p0, p1, p2 are then computed using eq. 1-3. A search window
of width w′ and height h′ is computed based on the mean
depth (z-coordinate) of the points p0, p1, p2 (lines 11-13),
and the minimum expected size S of the planes in the world.
An additional l−3 local samples dj are then sampled from the
search window. The plane fit error for the 3D point pj from
the plane defined by the points p1, p2, p3 is computed (line 21)
to determine if it as an “inlier.” If more than αinl points in
the search window are classified as inliers, then all the inlier
points P̂ are added to the list P , and the associated normals to
the list R. A convex polygon ĉ is constructed (line 31) from P̂ ,
and added to the list of convex polygons, C. The procedure
for constructing the convex polygon ĉ from 3D points P̂ is
discussed in Section IV. This algorithm is run a maximum of
mmax times to generate a list of at most nmax 3D points and
their corresponding plane normals.

IV. PLANE POLYGON CONSTRUCTION AND MERGING

A convex polygon is denoted by the tuple c =
{P̂ , n, p̄, r, b1, b2, B} where P̂ is the set of 3D points used
to construct the convex polygon, n the number of points in

Parameter Description
nmax Maximum total number of 3D points
kmax Maximum number of neighborhoods to sample
l Number of local samples
η Neighborhood for global samples (in pixels)
S Plane size in world space for local samples
ε Maximum plane offset error for inliers
αin Minimum fraction of inliers to accept local sample

TABLE I: Configuration parameters for plane filtering algo-
rithm



Algorithm 1 Plane Filtering Algorithm

1: procedure PLANEFILTERING(I)
2: P,R,C,O ← {}
3: n, k ← 0
4: while n < nmax ∧ k < kmax do
5: k ← k + 1
6: d0 ← (rand(0, h− 1), rand(0, w − 1))
7: d1 ← d0 + (rand(−η, η), rand(−η, η))
8: d2 ← d0 + (rand(−η, η), rand(−η, η))
9: Reconstruct p0, p1, p2 from d0,d1,d2 . eq. 1-3

10: r = (p1−p0)×(p2−p0)
||(p1−p0)×(p2−p0)|| . Compute plane normal

11: z̄ = p0z+p1z+p2z

3
12: w′ = wS

z̄ tan(fh)
13: h′ = hS

z̄ tan(fv)
14: numInliers ← 0
15: P̂ ← {}
16: R̂← {}
17: ĉ← {}
18: for j ← 3, l do
19: dj ← d0 + (rand(−h′

2 ,
h′

2 ), rand(−w′

2 ,
w′

2 ))
20: Reconstruct 3D point pj from dj . eq. 1-3
21: e = abs [r · (p− p0)]
22: if e < ε then
23: Add pj to P̂
24: Add r to R̂
25: numInliers ← numInliers + 1
26: end if
27: end for
28: if numInliers > αinl then
29: Add P̂ to P
30: Add R̂ to R
31: Construct convex polygon ĉ from P̂
32: Add ĉ to C
33: numPoints ← numPoints + numInliers
34: else
35: Add P̂ to O
36: end if
37: end while
38: return P,R,C,O
39: end procedure

P̂ , p̄ the centroid of the polygon, r the normal to the polygon
plane, b1 and b2 the 2D basis vectors on the plane of the
polygon and B the set of 3D points which define the convex
boundary of the polygon. Given a set of 3D points P̂ , a convex
polygon c is constructed from P̂ as follows:

1) The polygon centroid p̄ is computed as p̄ = 1
n

∑
pi∈P̂ pi.

2) The Scatter Matrix S of the points in P̂ is computed as
S =

∑
pi∈P̂ (pi − p̄)(pi − p̄)T .

3) The normal r is then given by the eigenvector of S
corresponding to its smallest eigenvalue.

4) The basis vectors b1 and b2 are the remaining two
eigenvectors of S.

5) The boundary set B is found using Graham scan [3]

over the points of P̂ projected onto the plane.
In order to construct a meaningful geometric representation

of a scene, it is neccesary to merge the observed polygons from
multiple scenes to form a single, “global scene”. In general,
this is done in three steps:

1) Pose Registration: The pose of the camera is extracted
relative to the global coordinates of the scene.

2) Polygon Correspondence Matching: Polygons in the
latest frame are matched to polygons in the global scene.

3) Polygon Merging: Matched polygons are merged to
update the plane parameters and the convex hull of the
polygons in the scene.

In this Section, we discuss methods for performing the third
step, polygon merging.

The problem of polygon merging is thus: given two convex
polygons c1, c2, we wish to construct a merged polygon cm

using the 3D points from both planes c1 and c2.
The naı̈ve approach to merging polygons

c1 = {P̂ 1, n1, p̄1, r1, b11, b
1
2, B

1} and c2 =
{P̂ 2, n2, p̄2, r2, b22, b

2
2, B

2} to form merged polygon
cm = {P̂m, nm, p̄m, rm, bmm, b

m
2 , B

m} is to combine the
3D points as P̂m = P̂ 1

⋃
P̂ 2 and then compute all other

polygon parameters from P̂m. In practice, this is infeasible
since it requires a complete history of all 3D points ever
observed to be maintained. It is, however, possible to perform
polygon merging without maintaining a complete history of
all observed 3D points.

The scatter matrix S1 for polygon 1, constructed from points
p1

i = {x1
i , y

1
i , z

1
i }, p1

i ∈ P̂ 1, i ∈ [1, n1] has the form

S1 =

S11 S12 S13

S21 S22 S23

S31 S32 S33

 , (4)

where

S1
11 =

∑
(x1

i − x̄1)(x1
i − x̄1), (5)

S1
12 = S1

21 =
∑

(x1
i − x̄1)(y1

i − ȳ1), (6)
S1

13 = S1
31 =

∑
(x1

i − x̄1)(z1
i − z̄1), (7)

S1
22 =

∑
(y1

i − ȳ1)(y1
i − ȳ1), (8)

S1
23 = S1

32 =
∑

(y1
i − ȳ1)(z1

i − z̄1), (9)
S1

33 =
∑

(z1
i − z̄1)(z1

i − z̄1). (10)

Scatter matrices from two different polygons cannot be directly
combined due to the coupling in S between the points pi and
the centroid. However, S1 may be decoupled as S1 = S1

1 +
n1S1

2 where S1
1 depends only on the 3D points in P̂ 1, and S1

2

on the centroid p̄1. S1
1 and S1

2 are then given by,

S1
1 =
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1
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 , (11)

S1
2 =

x̄1x̄1 x̄1ȳ1 x̄1z̄1

ȳ1x̄1 ȳ1ȳ1 ȳ1z̄1

z̄1x̄1 z̄1ȳ1 z̄1z̄1

 . (12)



Given the centroids p̄1 and p̄2 of the two polygons, the
centroid p̄m of the merged polygon is computed as

p̄m = 1
nm (n1p̄1 + n2p̄2), (13)

nm = n1 + n2. (14)

Thus, the matrix Sm
2 can be computed from p̄m, and the

scatter matrix of the combined polygon is given by,

Sm = S1
1 + S2

1 + nmSm
2 . (15)

Therefore, the matrix S1 along with centroid p̂ and the number
of points n are sufficient for merging polygons based on the
complete history of observed 3D points, and the individual
3D points no longer need to be maintained for each poly-
gon. To ensure numerical stability over time, the eigenvector
decomposition is performed on the normalized matrix 1

nS,
and normalized matrices 1

nS1 are maintained instead of S1.
The convex boundary point set Bm of the merged polygon is
computed by running Graham scan on the union of the points
from the boundary point sets B1 and B2 of the constituent
polygons.

The complete set of steps to merge two polygons are thus,
1) Compute centroid p̄m using Eq. 14
2) Compute scatter matrix Sm using Eq. 15
3) Compute normal rm and basis vectors bm1 , b

m
2 by eigen-

vector decompostion of Sm

4) Compute boundary point set Bm using Graham scan on
plane projected points from B1

⋃
B2

V. EXPERIMENTAL RESULTS

We performed two sets of experiments to demonstrate the
computational efficiency and effectiveness of FSPF and the
polygon merging algorithms. First, we evaluated the effect of
varying the parameters of FSPF on its run time using logged
data from the Kinect Sensor mounted on our mobile robot
while driving around in an indoor environment. Next, we
tested the FSPF and polygon merging algorithms on a set of
real indoor scenes.

A. Computational Requirements

Depth image data was recorded for a 153 second long run
of our mobile robot navigating down a series of hallways
and open areas. This data was processed offline by varying
the parameters of the FSPF algorithm to see their impact on
computational requirements in terms of the mean CPU time
required to generate the plane filtered points. This does not
include the time taken for polygonization, since the polygo-
nization time is approximately constant ( dominated by the
time taken for the eigenvector decomposition of the scatter
matrix) for a fixed number of polygons. These tests were run
on a single core of an Intel Core i7 950 processor @ 3.07GHz.

Fig. 2 shows the variation in the processing time for the
FSPF algorithm for different values of nmax, η, f , and l.The
processing time scales roughly linearly with the maximum
number of 3D points, nmax. For smaller values of η, there
are more rejected samples, corresponding to longer processing
times. For larger values of η, plane estimates with larger offset

errors are accepted, leading to shorter processing times. Larger
values of f correspond to larger consensus sets, so the trend
in processing times is the opposite to that for different values
of η. The processing times decrease with larger values of l.

B. Real World Scene Tests

The FSPF and polygon merge algorithms were tested on
data collected from 5 scenes. At each scene, the Kinect
sensor was kept static, so no pose update was neccesary.
For each scene, the polygons from 15 consecutive frames
were merged to generate a set of polygons which represent
the entire scene. Fig. 3 shows the scenes and the processed
output from each scene, while Table II summarizes the output
and processing times for the algorithms for each scene. The
sampling efficiency for each scene is computed as the ratio
of the mean number of plane filtered points per frame to the
mean sampled locations per frame. The FSPF run time is per
frame, and the polygon merge processing time is for all the
polygons per frame.

Scene 1 has three boxes in the corner of a room. The
merged scene polygons correctly include all the planes in
the scene except two (the tops of the boxes on the left and
center). Scene 2 is set in a corridor, and lacks clutter. The
merged scene polygons correctly include all the polygons in
the immediate vicinity of the Kinect. Scene 3 is set in an
open area next to a staircase. The merged scene polygons
include the ground polygon, the side of the staircase, and the
overhanging staircase. Scenes 4 and 5 show work areas with
chairs and tables. Despite the clutter, all table surfaces are
correctly identified among the merged scene polygons. Scene
5 had a toy chair on top of the table, and the merged scene
includes its corresponding polygons as well.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced the Fast Sampling Plane Filter-
ing algorithm to filter depth images into plane filtered points
and polygons, and subsequently the polygon merge algorithm
which merged polygons based on the complete history of
observations. We experimentally showed the computational
efficiency of FSPF. We further evaluated the effectiveness
of FSPF and the polygon merge algorithms by testing on a
number of indoor scenes which included clutter.

Currently the polygon merging algorithm assumes that
merged polygons are convex, but merging to complex poly-
gons would be the natural next step. The camera pose registra-
tion and polygon matching algorithms have not been covered
in this work, but are areas of interest to the authors.
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Fig. 3: Test scenes 1-5 (top to bottom). First column shows the RGB image of the scene, second column the depth image,
third column the plane filtered points (orange points) and polygons (lilac) for a single depth image frame, fourth column the
polygons generated by merging 15 consecutive processed depth image frames. Columns 2 and 3 include overlays of the raw
3D point cloud (translucent white) for reference.
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